188 research outputs found

    Processing and secretion by Escherichia coli of a recombinant form of the immunogenic protein MPB70 of Mycobacterium bovis

    Get PDF
    The gene encoding an immunodominant secreted antigen, MPB70, of Mycobacterium bovis was cloned into the plasmid vector pBluescript I1 KS ' along with its native ribosome-binding site. In this construct translation of the protein in Escherichia coli was from the native AUG initiation codon and was directed by the mycobacterial ribosome-binding site. Two different molecular mass forms (26 kDa and 22 kDa) of MPB70 were observed in whole-cell pellets of recombinant E. coli. The difference in size indicates cleavage of the signal peptide of MPB70 by an endopeptidase of E. coli. MPB70 was secreted into the periplasm of recombinant E. coli, where the 22 kDa form of the protein was predominant. The culture filtrate contained only the 22 kDa form of the protein, which was soluble. The passage of MPB70 from the periplasm into the growth medium was found to be due, at least in part, to non-specific leakage of periplasmic proteins across the outer membrane associated with the expression of recombinant MPB70

    Environmental monitoring of Mycobacterium bovis in badger feces and badger sett soil by real-time PCR, as confirmed by immunofluorescence, immunocapture, and cultivation

    Get PDF
    Real-time PCR was used to detect and quantify Mycobacterium bovis cells in naturally infected soil and badger faeces. Immunomagnetic capture, immunofluorescence and selective culture confirmed species identification and cell viability. These techniques will prove useful for monitoring M. bovis in the environment and for elucidating transmission routes between wildlife and cattle

    Rapid detection of Mycobacterium bovis DNA in cattle lymph nodes with visible lesions using PCR

    Get PDF
    BACKGROUND: We have evaluated a sensitive screening assay for Mycobacterium tuberculosis (MTB) complex organisms and a specific assay for detecting Mycobacterium bovis DNA in lymph nodes taken from cattle with evidence of bovine tuberculosis. Underlying these series of experiments was the need for a versatile DNA extraction protocol which could handle tissue samples and with the potential for automation. The target for the screening assay was the multi-copy insertion element IS1081, present in 6 copies in the MTB complex. For confirmation of M. bovis we used primers flanking a specific deletion in the genome of M. bovis known as region of difference 4 (RD4). The sensitivity and specificity of these PCRs has been tested on genomic DNA from MTB complex reference strains, mycobacteria other than tuberculosis (MOTT), spiked samples and on clinical material. RESULTS: The minimum detection limits of the IS1081 method was < I genome copy and for the RD4 PCR was 5 genome copies. Both methods can be readily adapted for quantitative PCR with the use of SYBR Green intercalating dye on the RotorGene 3000 platform (Corbett Research). Initial testing of field samples of bovine lymph nodes with visible lesions (VL, n = 109) highlighted two shortfalls of the molecular approach. Firstly, comparison of IS1081 PCR with the "gold standard" of culture showed a sensitivity of approximately 70%. The sensitivity of the RD4 PCR method was 50%. Secondly, the success rate of spoligotyping applied directly to clinical material was 51% compared with cultures. A series of further experiments indicated that the discrepancy between sensitivity of detection found with purified mycobacterial DNA and direct testing of field samples was due to limited mycobacterial DNA recovery from tissue homogenates rather than PCR inhibition. The resilient mycobacterial cell wall, the presence of tissue debris and the paucibacillary nature of some cattle VL tissue may all contribute to this observation. Any of these factors may restrict application of other more discriminant typing methods. A simple means of increasing the efficiency of mycobacterial DNA recovery was assessed using a further pool of 95 cattle VL. Following modification of the extraction protocol, detection rate with the IS1081 and RD4 methods increased to 91% and 59% respectively. CONCLUSION: The IS1081 PCR is a realistic screening method for rapid identification of positive cases but the sensitivity of single copy methods, like RD4 and also of spoligotyping will need to be improved to make these applicable for direct testing of tissue extracts

    Admixture mapping of tuberculosis and pigmentation-related traits in an African–European hybrid cattle population

    Get PDF
    Admixture mapping affords a powerful approach to genetic mapping of complex traits and may be particularly suited to investigation in cattle where many breeds and populations are hybrids of the two divergent ancestral genomes, derived from Bos taurus and Bos indicus. Here we design a minimal genome wide SNP panel for tracking ancestry in recent hybrids of Holstein Friesian and local Arsi zebu in a field sample from a region of high bovine tuberculosis endemicity in the central Ethiopian highlands. We first demonstrate the utility of this approach by mapping the red coat color phenotype, uncovering a highly significant peak over the MC1R gene and a second peak with no previously known candidate gene. Secondly, we exploit the described differential susceptibility to bovine tuberculosis between the ancestral strains to identify a region in which Bos taurus ancestry associates, at suggestive significance, with skin test positivity. Interestingly, this association peak contains the toll-like receptor gene cluster on chromosome 6. With this work we have shown the potential of admixture mapping in hybrid domestic animals with divergent ancestral genomes, a recurring condition in domesticated species

    Genome-level analyses of Mycobacterium bovis lineages reveal the role of SNPs and antisense transcription in differential gene expression

    Get PDF
    BACKGROUND: Bovine tuberculosis (bTB) is a disease with major implications for animal welfare and productivity, as well as having the potential for zoonotic transmission. In Great Britain (GB) alone, controlling bTB costs in the region of £100 million annually, with the current control scheme seemingly unable to stop the inexorable spread of infection. One aspect that may be driving the epidemic is evolution of the causative pathogen, Mycobacterium bovis. To understand the underlying genetic changes that may be responsible for this evolution, we performed a comprehensive genome-level analyses of 4 M. bovis strains that encompass the main molecular types of the pathogen circulating in GB. RESULTS: We have used a combination of genome sequencing, transcriptome analyses, and recombinant DNA technology to define genetic differences across the major M. bovis lineages circulating in GB that may give rise to phenotypic differences of practical importance. The genomes of three M. bovis field isolates were sequenced using Illumina sequencing technology and strain specific differences in gene expression were measured during in vitro growth and in ex vivo bovine alveolar macrophages using a whole genome amplicon microarray and a whole genome tiled oligonucleotide microarray. SNP/small base pair insertion and deletions and gene expression data were overlaid onto the genomic sequence of the fully sequenced strain of M. bovis 2122/97 to link observed strain specific genomic differences with differences in RNA expression. CONCLUSIONS: We show that while these strains show extensive similarities in their genetic make-up and gene expression profiles, they exhibit distinct expression of a subset of genes. We provide genomic, transcriptomic and functional data to show that synonymous point mutations (sSNPs) on the coding strand can lead to the expression of antisense transcripts on the opposing strand, a finding with implications for how we define a 'silent’ nucleotide change. Furthermore, we show that transcriptomic data based solely on amplicon arrays can generate spurious results in terms of gene expression profiles due to hybridisation of antisense transcripts. Overall our data suggest that subtle genetic differences, such as sSNPS, may have important consequences for gene expression and subsequent phenotype

    Epidemiology of Mycobacterium tuberculosis lineages and strain clustering within urban and peri-urban settings in Ethiopia

    Get PDF
    Background Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly understood. The present study investigated factors associated with M. tb lineage predominance and rate of strain clustering within urban and peri-urban settings in Ethiopia. Methods Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical and demographic data of the patients for further statistical analysis. Results From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns (n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-infection [2.84 (1.61, 5.55)]. Conclusion Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more detailed investigations into the molecular epidemiology of TB and related factors
    • 

    corecore