280 research outputs found

    Subsonic Flight Tests of a 1/7-Scale Radio-Controlled Model of the North American X-15 Airplane with Particular Reference to High Angel-of-Attack Conditions

    Get PDF
    An investigation of the subsonic stability and control characteristics of an unpowered 1/7-scale model based on the North American X-15 airplane was conducted by using a radio-controlled model launched from a helicopter and flown in free-gliding flight. At angles of attack below about 20 deg. where the model motions represent those of the X-15 airplane, the model was found to be both longitudinally and laterally stable, and the all-movable tail surfaces were found to be very effective. The model could also be flown at much higher angles of attack where the model motions did not necessarily represent those of the airplane because of slight geometrical differences and Reynolds number effects, but these test results are useful in evaluating the effectiveness at these angles of the type of lateral control system used in the X-15 airplane. In some cases, the model was flown to angles of attack as high as 60 or 70 deg. without encountering divergent or uncontrollable conditions. For some flights in which the model was subjected to rapid maneuvers, spinning motions were generated by application of corrective controls to oppose the direction of rotation. Rapid recoveries from this type of motion were achieved by applying roll control in the direction of rotation

    Magazine Media Challenges

    Get PDF
    Moderator: Samir Mr. Magazine ™ Husni, Founder and Director, Magazine Innovation Center Linda Thomas Brooks: President & CEO, MPA: The Association of Magazine Media James Hewes: President & CEO, FIPP Jerry Lynch: President, Magazine & Books Retail Association Michael Marchesano: Managing Director, Connectiv/SIIA/AM&

    Direct and oxidative dehydrogenation of propane: From catalyst design to industrial application

    Get PDF
    The direct formation of propene from propane is a well-established commercial process, which based on energy consumption, is environmentally preferred to the current large-scale sources of propene from steam cracking and fluid catalytic cracking. Current sources of propane are mostly non-renewable, but the development of technologies to produce renewable “green” propane are gaining traction, which coupled with new catalytic processes will provide the platform to produce green propene. We evaluate the technological and environmental merits of dehydrogenation catalysts. Currently, non-oxidative direct dehydrogenation (DDH) is the only commercialised process, and this is reflected in the high space-time yield commonly reported over the most active Pt or Cr catalysts. However, the formation of coke necessitates multi-reactor cycling to facilitate regeneration. Oxidative dehydrogenation using O2 (ODH-O2) does not suffer from coke formation, but can lead to overoxidation, limiting the yield of propene. While no commercial processes have yet been developed, a promising new class of active and selective ODH-O2 catalysts has emerged which use boron as the active component. The use of CO2 as a soft oxidant (ODH-CO2) has also gained interest due to the environmental advantages of utilising CO2. Although this is an attractive prospect, the propene yields with these catalysts are considerably less active then DDH and ODH-O2 catalysts. Despite significant advances in the past decade, current ODH-CO2 catalysts remain far from displaying the activity levels necessary to be considered for commercial application. The specific requirements of catalyst design for each sub-reaction are discussed and we identify that the balance of acid and base sites on the catalyst surface is of paramount importance. Future catalyst design in DDH and ODH-O2 should focus on improving selectivity to propene, while ODH-CO2 catalysts are limited by their low intrinsic activity. The scarcity of some common catalytic elements is also discussed, with recommendations focusing on more abundant chemical elements. Future research should focus on the low temperature activation of CO2 as a priority. With further research and development of lower energy routes to propene based on the dehydrogenation of sustainably-sourced propane, it should be possible to transform the manufacturing landscape of this key chemical intermediate

    Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.

    No full text
    Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity.165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100.There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up.Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses
    • …
    corecore