117 research outputs found

    GaN-Based Detector Enabling Technology for Next Generation Ultraviolet Planetary Missions

    Get PDF
    The ternary alloy AlN-GaN-InN system provides several distinct advantages for the development of UV detectors for future planetary missions. First, (InN), (GaN) and (AlN) have direct bandgaps 0.8, 3.4 and 6.2 eV, respectively, with corresponding wavelength cutoffs of 1550 nm, 365 nm and 200 nm. Since they are miscible with each other, these nitrides form complete series of indium gallium nitride (In(sub l-x)Ga(sub x)N) and aluminum gallium nitride (Al(sub l-x)Ga(sub x)N) alloys thus allowing the development of detectors with a wavelength cut-off anywhere in this range. For the 2S0-365 nm spectral wavelength range AlGaN detectors can be designed to give a 1000x solar radiation rejection at cut-off wavelength of 325 nm, than can be achieved with Si based detectors. For tailored wavelength cut-offs in the 365-4S0 nm range, InGaN based detectors can be fabricated, which still give 20-40x better solar radiation rejection than Si based detectors. This reduced need for blocking filters greatly increases the Detective Quantum efficiency (DQE) and simplifies the instrument's optical systems. Second, the wide direct bandgap reduces the thermally generated dark current to levels allowing many observations to be performed at room temperature. Third, compared to narrow bandgap materials, wide bandgap semiconductors are significantly more radiation tolerant. Finally, with the use of an (AI, In)GaN array, the overall system cost is reduced by eliminating stringent Si CCD cooling systems. Compared to silicon, GaN based detectors have superior QE based on a direct bandgap and longer absorption lengths in the UV

    Mid-Infrared Ethane Emission on Neptune and Uranus

    Full text link
    We report 8- to 13-micron spectral observations of Neptune and Uranus from the NASA Infrared Telescope Facility spanning more than a decade. The spectroscopic data indicate a steady increase in Neptune's mean atmospheric 12-micron ethane emission from 1985 to 2003, followed by a slight decrease in 2004. The simplest explanation for the intensity variation is an increase in stratospheric effective temperature from 155 +/- 3 K in 1985 to 176 +/- 3 K in 2003 (an average rate of 1.2 K/year), and subsequent decrease to 165 +/- 3 K in 2004. We also detected variation of the overall spectral structure of the ethane band, specifically an apparent absorption structure in the central portion of the band; this structure arises from coarse spectral sampling coupled with a non-uniform response function within the detector elements. We also report a probable direct detection of ethane emission on Uranus. The deduced peak mole fraction is approximately an order of magnitude higher than previous upper limits for Uranus. The model fit suggests an effective temperature of 114 +/- 3 K for the globally-averaged stratosphere of Uranus, which is consistent with recent measurements indicative of seasonal variation.Comment: Accepted for publication in ApJ. 16 pages, 10 figures, 2 table

    Overview of Primitive Object Volatile Explorer (PrOVE) CubeSat or Smallsat Concept

    Get PDF
    Here we describe the Primitive Object Volatile Explorer (PrOVE), a smallsat mission concept to study the surface structure and volatile inventory of comets in their perihelion passage phase when volatile activity is near peak. CubeSat infrastructure imposes limits on propulsion systems, which are compounded by sensitivity to the spacecraft disposal state from the launch platform and potential launch delays. We propose circumventing launch platform complications by using waypoints in space to park a deep space SmallSat or CubeSat while awaiting the opportunity to enter a trajectory to flyby a suitable target. In our Planetary Science Deep Space SmallSat Studies (PSDS3) project, we investigated scientific goals, waypoint options, potential concept of operations (ConOps) for periodic and new comets, spacecraft bus infrastructure requirements, launch platforms, and mission operations and phases. Our payload would include two low-risk instruments: a visible image (VisCAM) for 5-10 m resolution surface maps; and a highly versatile multispectral Comet CAMera (ComCAM) will measure 1) H2O, CO2, CO, and organics non-thermal fluorescence signatures in the 2-5 m MWIR, and 2) 7-10 and 8-14 m thermal (LWIR) emission. This payload would return unique data not obtainable from ground-based telescopes and complement data from Earth-orbiting observatories. Thus, the PrOVE mission would (1) acquire visible surface maps, (2) investigate chemical heterogeneity of a comet nucleus by quantifying volatile species abundance and changes with solar insolation, (3) map the spatial distribution of volatiles and determine any variations, and (4) determine the frequency and distribution of outbursts

    Influenza epidemiology, vaccine coverage and vaccine effectiveness in children admitted to sentinel Australian hospitals in 2014: The influenza complications alert network (FluCAN)

    Full text link
    The Influenza Complications Alert Network (FluCAN) is a sentinel hospital-based surveillance programme operating in all states and territories in Australia. We summarise the epidemiology of children hospitalised with laboratory-confirmed influenza in 2014 and reports on the effectiveness of inactivated trivalent inactivated vaccine (TIV) in children. In this observational study, cases were defined as children admitted with acute respiratory illness (ARI) with influenza confirmed by PCR. Controls were hospitalised children with ARI testing negative for influenza. Vaccine effectiveness (VE) was estimated as 1 minus the odds ratio of vaccination in influenza positive cases compared with test-negative controls using conditional logistic regression models. From April until October 2014, 402 children were admitted with PCR-confirmed influenza. Of these, 28% were aged < 1 year, 16% were Indigenous, and 39% had underlying conditions predisposing to severe influenza. Influenza A was detected in 90% of cases of influenza; influenza A(H1N1)pdm09 was the most frequent subtype (109/141 of subtyped cases) followed by A(H3N2) (32/141). Only 15% of children with influenza received antiviral therapy. The adjusted VE of one or more doses of TIV for preventing hospitalised influenza was estimated at 55.5% (95% confidence intervals (CI): 11.6–77.6%). Effectiveness against influenza A(H1N1)pdm09 was high (91.6%, 95% CI: 36.0–98.9%) yet appeared poor against H3N2. In summary, the 2014 southern hemisphere TIV was moderately effective against severe influenza in children. Significant VE was observed against influenza A(H1N1)pdm0

    A Compact, Multi-view Net Flux Radiometer for Future Uranus and Neptune Probes

    Get PDF
    A Net Flux Radiometer (NFR) is presented that can be included in an atmospheric structure instrument suite for future probe missions to the icy giants Uranus and Neptune. The baseline design has two spectral channels i.e., a solar channel (0.4-to-3.5 m) and a thermal channel (4-to-300 m). The NFR is capable of viewing five distinct viewing angles during the descent. Non-imaging Winston cones with band-pass filters are used for each spectral channel and to define a 5 angular acceptance. Uncooled thermopile detectors are used in each spectral channel and are read out using a custom radiation hard application specific integrated circuit (ASIC). The baseline design can easily be changed to increase the number of detector channels from two to seven

    Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    Get PDF
    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect

    Miniaturized Monolithic Hollow-Waveguide Spectrometer for CubeSat-Based Remote Mid-Infrared Sensing

    Get PDF
    Miniaturized monolithic waveguide devices have been designed as part of an ongoing project to develop a mini Fourier-Transform Spectrometer (micro-FTS) on a chip for remote sensing applications. One application of the micro-FTS waveguide device is remote atmospheric sensing via a CubeSat, providing a compact, lightweight platform for low-cost missions. Hollow-waveguide devices have been fabricated using photolithography and deep reactive ion etching (DRIE) techniques on silicon wafers. The devices were characterized using Scanning Electron Microscopy (SEM) and processed with a Focused Ion Beam (FIB) to remove debris produced by the manufacturing process. SEM analysis showed both silicon shards and over-deposition of gold within the waveguide channels as defects. Alternative manufacturing methods are being investigated to minimize defects and maintain the transmission integrity of the hollow waveguides
    • …
    corecore