23 research outputs found

    Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1

    Get PDF
    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP(3)Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP(3)R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP(3)R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP(3)R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment

    Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    Get PDF
    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space

    ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9).</p> <p>Results</p> <p>We found that a variant of ASB9 that lacks the SOCS box (ASB9ΔSOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9ΔSOCS, induces ubiquitination of uMtCK. ASB9 and ASB9ΔSOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9ΔSOCS.</p> <p>Conclusions</p> <p>ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9ΔSOCS may be a key factor in the growth of human cell lines and primary cells.</p

    Filamins Regulate Cell Spreading and Initiation of Cell Migration

    Get PDF
    Mammalian filamins (FLNs) are a family of three large actin-binding proteins. FLNa, the founding member of the family, was implicated in migration by cell biological analyses and the identification of FLNA mutations in the neuronal migration disorder periventricular heterotopia. However, recent knockout studies have questioned the relevance of FLNa to cell migration. Here we have used shRNA-mediated knockdown of FLNa, FLNb or FLNa and FLNb, or, alternatively, acute proteasomal degradation of all three FLNs, to generate FLN-deficient cells and assess their ability to migrate. We report that loss of FLNa or FLNb has little effect on migration but that knockdown of FLNa and FLNb, or proteolysis of all three FLNs, impairs migration. The observed defect is primarily a deficiency in initiation of motility rather than a problem with maintenance of locomotion speed. FLN-deficient cells are also impaired in spreading. Re-expression of full length FLNa, but not re-expression of a mutated FLNa lacking immunoglobulin domains 19 to 21, reverts both the spreading and the inhibition of initiation of migration

    A Novel Conserved Isoform of the Ubiquitin Ligase UFD2a/UBE4B Is Expressed Exclusively in Mature Striated Muscle Cells

    Get PDF
    Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish), UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3′ introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis

    The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1

    Get PDF
    Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre+;Nf1flox/− and Col2.3Cre+;Nf1flox/−mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/− marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations

    The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation

    No full text
    International audienceUbiquitin-mediated protein degradation is the main mechanism for controlled proteolysis, which is crucial for muscle development and maintenance. The ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 gene (ASB2) encodes the specificity subunit of an E3 ubiquitin ligase complex involved in differentiation of hematopoietic cells. Here, we provide the first evidence that a novel ASB2 isoform, ASB2beta, is important for muscle differentiation. ASB2beta is expressed in muscle cells during embryogenesis and in adult tissues. ASB2beta is part of an active E3 ubiquitin ligase complex and targets the actin-binding protein filamin B (FLNb) for proteasomal degradation. Thus, ASB2beta regulates FLNb functions by controlling its degradation. Knockdown of endogenous ASB2beta by shRNAs during induced differentiation of C2C12 cells delayed FLNb degradation as well as myoblast fusion and expression of muscle contractile proteins. Finally, knockdown of FLNb in ASB2beta knockdown cells restores myogenic differentiation. Altogether, our results suggest that ASB2beta is involved in muscle differentiation through the targeting of FLNb to destruction by the proteasome
    corecore