61 research outputs found

    Physiological Phenomenology of Neurally-Mediated Syncope with Management Implications

    Get PDF
    BACKGROUND: Due to lack of efficacy in recent trials, current guidelines for the treatment of neurally-mediated (vasovagal) syncope do not promote cardiac pacemaker implantation. However, the finding of asystole during head-up tilt -induced (pre)syncope may lead to excessive cardioinhibitory syncope diagnosis and treatment with cardiac pacemakers as blood pressure is often discontinuously measured. Furthermore, physicians may be more inclined to implant cardiac pacemakers in older patients. We hypothesized that true cardioinhibitory syncope in which the decrease in heart rate precedes the fall in blood pressure is a very rare finding which might explain the lack of efficacy of pacemakers in neurally-mediated syncope. METHODS: We studied 173 consecutive patients referred for unexplained syncope (114 women, 59 men, 42 ± 1 years, 17 ± 2 syncopal episodes). All had experienced (pre)syncope during head-up tilt testing followed by additional lower body negative suction. We classified hemodynamic responses according to the modified Vasovagal Syncope International Study (VASIS) classification as mixed response (VASIS I), cardioinhibitory without (VASIS IIa) or with asystole (VASIS IIb), and vasodepressor (VASIS III). Then, we defined the exact temporal relationship between hypotension and bradycardia to identify patients with true cardioinhibitory syncope. RESULTS: Of the (pre)syncopal events during tilt testing, 63% were classified as VASIS I, 6% as VASIS IIb, 2% as VASIS IIa, and 29% as VASIS III. Cardioinhibitory responses (VASIS class II) progressively decreased from the youngest to the oldest age quartile. With more detailed temporal analysis, blood pressure reduction preceded the heart-rate decrease in all but six individuals (97%) overall and in 10 out of 11 patients with asystole (VASIS IIb). CONCLUSIONS: Hypotension precedes bradycardia onset during head-up tilt-induced (pre)syncope in the vast majority of patients, even in those classified as cardioinhibitory syncope according to the modified VASIS classification. Furthermore, cardioinhibitory syncope becomes less frequent with increasing age

    Slow breathing reduces sympathoexcitation in COPD

    Get PDF
    Neurohumoral activation has been shown to be present in hypoxic patients with chronic obstructive pulmonary disease (COPD). The aims of the present study were to investigate whether there is sympathetic activation in COPD patients in the absence of hypoxia and whether slow breathing has an impact on sympathoexcitation and baroreflex sensitivity. Efferent muscle sympathetic nerve activity, blood pressure, cardiac frequency and respiratory movements were continuously measured in 15 COPD patients and 15 healthy control subjects. Baroreflex sensitivity was analysed by autoregressive spectral analysis and the alpha-angle method. At baseline, sympathetic nerve activity was significantly elevated in COPD patients and baroreflex sensitivity was decreased (5.0+/-0.6 versus 8.9+/-0.8 ms.mmHg(-1)). Breathing at a rate of 6 breaths.min(-1) caused sympathetic activity to drop significantly in COPD patients (from 61.3+/-4.6 to 53.0+/-4.3 bursts per 100 heartbeats) but not in control subjects (39.2+/-3.2 versus 37.5+/-3.3 bursts per 100 heartbeats). In both groups, slow breathing significantly enhanced baroreflex sensitivity. In conclusion, sympathovagal imbalance is present in normoxic chronic obstructive pulmonary disease patients. The possibility of modifying these changes by slow breathing may help to better understand and influence this systemic disease

    Effect of Acute Ozone Induced Airway Inflammation on Human Sympathetic Nerve Traffic: A Randomized, Placebo Controlled, Crossover Study

    Get PDF
    Background: Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. Methodology/Principal Findings: To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22-47 years), who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb) or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA) at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59 +/- 62, ozone 60 +/- 62 bpm), blood pressure (clean air: 121 +/- 3/71 +/- 2 mmHg; ozone: 121 +/- 2/71 +/- 2mmHg), cardiac output (clean air: 7.42 +/- 0.29 mmHg; ozone: 7.98 +/- 0.60 l/min), and plasma norepinephrine levels (clean air: 213 +/- 21 pg/ml; ozone: 202 +/- 16 pg/ml), were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 2362, ozone: 2362 bursts/min). Maximum MSNA obtained at the end of apnea (air: 44 +/- 4, ozone: 48 +/- 4 bursts/min) and during the phase II of the Valsalva maneuver (air: 64 +/- 5, ozone: 57 +/- 6 bursts/min) was similar. Conclusions/Significance: Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic activation

    A Crossover Trial Using High‐Fidelity Cardiovascular Phenotyping

    Get PDF
    Background Sympathetic and parasympathetic influences on heart rate (HR), which are governed by baroreflex mechanisms, are integrated at the cardiac sinus node through hyperpolarization‐activated cyclic nucleotide–gated channels (HCN4). We hypothesized that HCN4 blockade with ivabradine selectively attenuates HR and baroreflex HR regulation, leaving baroreflex control of muscle sympathetic nerve activity intact. Methods and Results We treated 21 healthy men with 2×7.5 mg ivabradine or placebo in a randomized crossover fashion. We recorded electrocardiogram, blood pressure, and muscle sympathetic nerve activity at rest and during pharmacological baroreflex testing. Ivabradine reduced normalized HR from 65.9±8.1 to 58.4±6.2 beats per minute (P<0.001) with unaffected blood pressure and muscle sympathetic nerve activity. On ivabradine, cardiac and sympathetic baroreflex gains and blood pressure responses to vasoactive drugs were unchanged. Ivabradine aggravated bradycardia during baroreflex loading. Conclusions HCN4 blockade with ivabradine reduced HR, leaving physiological regulation of HR and muscle sympathetic nerve activity as well as baroreflex blood pressure buffering intact. Ivabradine could aggravate bradycardia during parasympathetic activation

    Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    Get PDF
    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups) after 30–40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects

    Glucose-sensitive hypothalamic nuclei traced through functional magnetic resonance imaging

    Get PDF
    IntroductionHypothalamic glucose-sensitive neural circuits, which regulate energy metabolism and can contribute to diseases such as obesity and type 2 diabetes, have been difficult to study in humans. We developed an approach to assess hypothalamic functional connectivity changes during glucose loading using functional magnetic resonance imaging (fMRI).MethodsTo do so, we conducted oral glucose tolerance tests while acquiring functional images before, and 10 and 45 min after glucose ingestion in a healthy male and cross-sectionally in 20 healthy participants on two different diets.ResultsAt group level, 39 fMRI sessions were not sufficient to detect glucose-mediated connectivity changes. However, 10 repeated sessions in a single subject revealed significant intrinsic functional connectivity increases 45 min after glucose intake in the arcuate, paraventricular, and dorsomedial nuclei, as well as in the posterior hypothalamic area, median eminence, and mammillary bodies.DiscussionOur methodology allowed to outline glucose-sensitive hypothalamic pathways in a single human being and holds promise in delineating individual pathophysiology mechanisms in patients with dysglycemia

    Baroreflex Curve Fitting Using a WYSIWYG Boltzmann Sigmoidal Equation

    Get PDF
    Arterial baroreflex assessment using vasoactive substances enables investigators to collect data pairs over a wide range of blood pressures and reflex reactions. These data pairs relate intervals between heartbeats or sympathetic neural activity to blood pressure values. In an X-Y plot the data points scatter around a sigmoidal curve. After fitting the parameters of a sigmoidal function to the data, the graph's characteristics represent a rather comprehensive quantitative reflex description. Variants of the 4-parameter Boltzmann sigmoidal equation are widely used for curve fitting. Unfortunately, their 'slope parameters' do not correspond to the graph's actual slope which complicates the analysis and bears the risk of misreporting. We propose a modified Boltzmann sigmoidal function with preserved goodness of fit whose parameters are one-to-one equivalent to the sigmoidal curve's characteristics

    What do we really know about supine hypertension in patients with orthostatic hypotension

    No full text
    Purpose of review Patients with severe orthostatic hypotension due to autonomic failure may be hypertensive in the supine position. Until recently, there were no internationally recognized diagnostic criteria for supine hypertension. This review covers diagnostic criteria, mechanisms, and management of supine hypertension in autonomic failure patients. Recent findings Recently, an international consensus group defined supine hypertension in patients with neurogenic orthostatic hypotension as brachial SBP at least 140 mmHg and/or DBP at least 90 mmHg while supine. Using these criteria, a large proportion of patients with orthostatic hypotension is diagnosed with supine hypertension. Recent research supports the concept that the hypertension can be mediated through residual sympathetic nervous system function and independently from sympathetic activity, for example via mineralocorticoid receptor activation. Summary The clear definition of supine hypertension is an important step that will hopefully foster clinical research in this area. Supine hypertension promotes renal sodium excretion, thus, worsening orthostatic hypotension the next morning. Supine hypertension may promote cardiovascular and renal disease. Yet, long-term benefits of treating supine hypertension be it through non pharmacological or pharmacological means have not been proven by sufficiently large clinical trials

    Baroreflex Failure

    No full text

    Effects of angiotensin II receptor antagonism on the renal hemodynamic response to cardiovascular stress

    Get PDF
    Effects of angiotensin II receptor antagonism on the renal hemodynamic response to cardiovascular stress.BackgroundTo elucidate the effect of the angiotensin type 1 (AT1) receptor antagonist (AT1RA) eprosartan (E) on renal hemodynamics in normotensive and borderline hypertensive subjects, we investigated the hormonal and renal hemodynamic responses during cardiopulmonary stress testing.MethodsIn a prospective, double-blind, randomized, placebo-controlled crossover study, the effects of E on renal plasma flow (RPF), renal blood flow (RBF), glomerular filtration rate (GFR), and the concentration of angiotensin II (Ang II) levels were measured with the subjects at rest and during perturbation of cardiopulmonary baroreceptors using lower body negative pressure (LBNP). Ten normotensive male subjects (NT) versus 14 males with mild hypertension (HT), matched for age and body mass index, who were all free of any medication, were randomly assigned to receive placebo or E 600 mg/day PO for seven days (intake phase 1). After a washout period of four weeks the subjects started the intake of the other substance for seven days in a crossover manner (intake phase 2). The measurements were taken on day 7 of both intake phases.ResultsDuring the LBNP test, RPF and RBF were reduced significantly in all subjects; GFR, however, decreased significantly during cardiopulmonary stress testing in the subjects taking the placebo (P < 0.05) and remained unchanged in those under treatment with AT1RA. Ang II levels increased significantly during cardiopulmonary stress test only in the subjects with hypertension who were on placebo, whereas the Ang II levels did not change in normotensive subjects or those treated with the AT1RA.ConclusionsThe data confirm that with cardiovascular stress simulating orthostasis or volume depletion, subjects with AT1RA can maintain their GFR level, suggesting that AT1RA potentially is renoprotective. Additionally, the neurohumoral system is activated after cardiovascular stress in subjects even at an early stage of hypertension
    corecore