17 research outputs found
Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo
Connective tissue growth factor (CCN2) is a major pro-fibrotic factor that frequently acts downstream of transforming growth factor beta (TGF-β)-mediated fibrogenic pathways. Much of our knowledge of CCN2 in fibrosis has come from studies in which its production or activity have been experimentally attenuated. These studies, performed both in vitro and in animal models, have demonstrated the utility of pharmacological inhibitors (e.g. tumor necrosis factor alpha (TNF-α), prostaglandins, peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists, statins, kinase inhibitors), neutralizing antibodies, antisense oligonucleotides, or small interfering RNA (siRNA) to probe the role of CCN2 in fibrogenic pathways. These investigations have allowed the mechanisms regulating CCN2 production to be more clearly defined, have shown that CCN2 is a rational anti-fibrotic target, and have established a framework for developing effective modalities of therapeutic intervention in vivo
CREB trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of CTGF transcription in mesangial cells
Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773–783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at −384/−380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the −384/−380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription
cAMP attenuates TGF-β’s profibrotic responses in osteoarthritic synoviocytes: involvement of hyaluronan and PRG4
Osteoarthritis (OA) is characterized by synovitis and synovial fibrosis. Synoviocytes are fibroblast-like resident cells of the synovium that are activated by transforming growth factor (TGF)-β to proliferate, migrate, and produce extracellular matrix. Synoviocytes secrete hyaluronan (HA) and proteoglycan-4 (PRG4). HA reduces synovial fibrosis in vivo, and the Prg4−/− mouse exhibits synovial hyperplasia. We investigated the antifibrotic effects of increased intracellular cAMP in TGF-β-stimulated human OA synoviocytes. TGF-β1 stimulated collagen I (COL1A1), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase (TIMP)-1, and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) expression, and procollagen I, α-SMA, HA, and PRG4 production, migration, and proliferation of OA synoviocytes were measured. Treatment of OA synoviocytes with forskolin (10 μM) increased intracellular cAMP levels and reduced TGF-β1-stimulated COL1A1, α-SMA, and TIMP-1 expression, with no change in PLOD2 expression. Forskolin also reduced TGF-β1-stimulated procollagen I and α-SMA content as well as synoviocyte migration and proliferation. Forskolin (10 μM) increased HA secretion and PRG4 expression and production. A cell-permeant cAMP analog reduced COL1A1 and α-SMA expression and enhanced HA and PRG4 secretion by OA synoviocytes. HA and PRG4 reduced α-SMA expression and content, and PRG4 reduced COL1A1 expression and procollagen I content in OA synoviocytes. Prg4−/− synovium exhibited increased α-SMA, COL1A1, and TIMP-1 expression compared with Prg4+/+ synovium. Prg4−/− synoviocytes demonstrated strong α-SMA and collagen type I staining, whereas these were undetected in Prg4+/+ synoviocytes and were reduced with PRG4 treatment. We conclude that increasing intracellular cAMP levels in synoviocytes mitigates synovial fibrosis through enhanced production of HA and PRG4, possibly representing a novel approach for treatment of OA synovial fibrosis
Simvastatin Induces Apoptosis and Alters Cytoskeleton in Endometrial Stromal Cells
Context: Statins are competitive inhibitors of 3-hydroxy-3methylglutaryl-coenzyme A reductase, with antimitotic, antioxidant, antiinflammatory, and immunomodulatory properties. Recent studies have shown that statins reduce the growth of human endometrial stromal (HES) cells and protect from the development of endometriosis in animal models