16 research outputs found

    Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius

    Get PDF
    We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language corrections; version sent to the printer w few upgrade

    Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius

    Get PDF
    Copyright © The European Southern Observatory (ESO)Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4×10−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40'' or triple systems are almost excluded with a 8 × 10−4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10−5 day and a radius of Rp = 1.68 ± 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived

    A new systematic approach using the Modified Gaussian Model: Insight for the characterization of chemical composition of olivines, pyroxenes and olivine-pyroxene mixtures

    No full text
    International audienceAn automatic procedure has been implemented on the original MGM approach (Sunshine et al., 1990) in order to deal with an a priori unknown mafic mineralogy observed in the visible-near infrared by reflectance spectroscopy in the case of laboratory or natural rock spectra. We consider all the mixture possibilities involving orthopyroxene, clinopyroxene and olivine, and use accordingly for each configuration different numbers of Gaussians, depending on the potential complexity of the mixture. A key issue is to initialize the MGM procedure with a proper setting for the Gaussians parameters. An automatic analysis of the shape of the spectrum is first performed. The continuum is handled with a second order polynomial adjusted on the local maxima along the spectrum and Gaussians parameters initial settings are made on the basis of laboratory results available in the literature in the case of simple mixtures of mafic minerals. The returned MGM solutions are then assessed on spectroscopic grounds and either validated or discarded, on the basis of a mineralogical sorting. The results presented in this paper are a first quantitative step to characterize both modal and chemical compositions of pyroxenes and olivines. A demonstration of the methodology on specific examples of binary and ternary olivine-pyroxenes mixtures has been made, which shows that the different non-linear effects which affect the Gaussian parameters (center and strength) can be successfully handled. Of note is the fact that the band center positions associated with the different mafic minerals are not set here in the inverse problem, and thus the MGM outputs are truly informative of the chemical composition of pyroxenes and olivines. With the consideration of some limits on the detection thresholds, these results are quite promising for increasing the operational use of the Modified Gaussian Model with large hyperspectral data sets in view of establishing detailed mineralogical mappings of magmatic units
    corecore