44 research outputs found

    Detection of Fusarium oxysporum f.sp. lactucae race 1 and 4 via race-specific real-time PCR and target enrichment

    Get PDF
    Fusarium oxysporum f.sp. lactucae (Fol) causes a vascular disease in lettuce that results in significant yield losses. Race-specific and sensitive real-time PCR assays were developed for Fol races 1 and 4, which are prevalent in Europe. Using genotyping-by-sequencing, unique DNA loci specific to each race were identified and subsequently used for the design of primers and hydrolysis probes. Two assays per race were developed to ensure specificity. The two assays of each race could be run in duplex format, while still giving a sensitivity of 100 fg genomic DNA for all assays. Sample preparation methods were developed for plant tissue, soil, and surfaces, with an extra enrichment step when additional sensitivity was required. By controlling the incubation conditions during the enrichment step, the real-time PCR signal could be matched to the number of spore equivalents in the original sample. When enriching naturally infested soil, down to six conidiospore equivalents L-1 soil could be detected. As enrichment ensures sensitive detection and focuses on living Fol propagules, it facilitates the evaluation of control measures. The developed detection methods for soil and surfaces were applied to samples from commercial lettuce farms and confirmed the prevalence of Fol race 4 in Belgium. Monitoring of soil disinfestation events revealed that despite a dramatic decrease in quantity, the pathogen could still be detected either immediately after sheet steaming or after harvesting the first new crop. The detection method for plant tissue was successfully used to quantify Fol in lettuce inoculated with race 1, race 4 or a combination of both. Under the temperature conditions used, race 4 was more aggressive than race 1, as reflected in larger amounts of DNA of race 4 detected in the roots. These newly developed assays are a promising tool for epidemiological research as well as for the evaluation of control measures

    Interlaboratory performance of a Real-Time PCR method for detection of Ceratocystis platani, the agent of canker stain of Platanus spp

    Get PDF
    Ceratocystis platani (CP), an ascomycetous fungus, is the agent of canker stain, a lethal vascular disease of Platanus species. Ceratocystis platani has been listed as a quarantine pest (EPPO A2 list) due to extensive damage caused in Southern Europe and the Mediterranean region. As traditional diagnostic assays are ineffective, a Real-Time PCR detection method based on EvaGreen, SYBR Green, and Taqman assays was previously developed, validated in-house, and included in the official EPPO standard PM7/14 (2). Here, we describe the results of a test performance study performed by nine European laboratories for the purpose of an interlaboratory validation. Verification of the DNA extracted from biological samples guaranteed the high quality of preparations, and the stability and the homogeneity of the aliquots intended for the laboratories. All of the laboratories reproduced nearly identical standard curves with efficiencies close to 100%. Testing of blind-coded DNA extracted from wood samples revealed that all performance parameters-diagnostic sensitivity, diagnostic specificity, accuracy and reproducibility-were best fit in most cases both at the laboratory and at the assay level. The previously established limit of detection, 3 fg per PCR reaction, was also validated with similar excellent results. The high interlaboratory performance of this Real-Time PCR method confirms its value as a primary tool to safeguard C. platani-free countries by way of an accurate monitoring, and to investigate the resistance level of potentially canker stain-resistant Platanus genotypes

    Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation

    Get PDF
    The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.info:eu-repo/semantics/publishedVersio

    Real-time PCR mediated monitoring of Fusarium foetens in symptomatic and non-symptomatic hosts

    No full text
    Fusarium foetens is a recently described aggressive vascular pathogen of Begonia x hiemalis. Since 2004, it has caused severe losses for Begonia growers in Northern Europe and North America. F. foetens is likely to be of exotic origin. Little is known about the accumulation of the fungus in Begonia plants before and during symptom expression and about its host range. We have optimised a molecular detection method for F. foetens by only using the plant part containing the largest amount of the pathogen and by optimising the tissue maceration and DNA extraction techniques. This allowed a reliable detection limit of 2310 spore equivalents per plant and a theoretical detection limit of as low as 84 to 167 spore equivalents per plant. Using this method, we demonstrated exponential accumulation of F. foetens DNA in Begonia roots, resulting in symptoms at a threshold of approximately 10(7) spore equivalents and levelling off at 10(9) spore equivalents per plant. The observed rate of accumulation and the amount of pathogen DNA in non-symptomatic plants can be combined to determine whether the cuttings were infected after delivery at the Begonia nursery and to calculate the estimated timing of symptom development. To test the host range, we applied the optimised molecular detection technique. During these tests, only Begonia x hiemalis plants became symptomatic, but many other plant species supported growth of the pathogen. This information can be used to aid pathogen control and has implications for pest risk assessment

    Resistance of red clover to broad spectrum of Sclerotinia trifoliorum

    Get PDF
    In this research a diversity study on different European isolates of the pathogenic fungus S. trifoliorum will be performed using mycelial compatibility grouping and AFLP. The next step is the development of a bio-test to screen red clover plants for their resistance level against clover rot. The third step in this research is evaluating different European strains for their virulence and evaluating a broad spectrum of red clover varieties for their resistance against S. trifoliorum. Over 100 varieties will be evaluated, including cultivars, landraces and wild varieties. Finally the inheritage of clover rot resistance in red clover will be evaluated by a QTL study. Sclerotinia isolates have been collected from clover fields among different European countries. Mycelial compatibility has shown a large variability within fields. The DNA extraction has been optimized. Sequencing of the ITS-region will be used to determine the exact species of every isolate. Primer combinations are currently being tested for the AFLP study. Different culture media were tested for their capacity to induce the production of multiple big sclerotia. The most optimal medium is being used to produce sclerotia from every isolate. Sclerotia are induced to apothecia formation and formed ascospores will be used to construct the bio-test

    Early Colonization Events in the Mutualistic Association between Steinernema carpocapsae Nematodes and Xenorhabdus nematophila Bacteria

    No full text
    The bacterium Xenorhabdus nematophila is a mutualist of the entomopathogenic nematode Steinernema carpocapsae. During its life cycle, the bacterium exists both separately from the nematode and as an intestinal resident of a nonfeeding nematode form, the infective juvenile (IJ). The progression of X. nematophila from an ex vivo existence to a specific and persistent colonization of IJs is a model to understand the mechanisms mediating the initiation and maintenance of benign host-microbe interactions. To help characterize this process, we constructed an X. nematophila strain that constitutively expresses green fluorescent protein, which allowed its presence to be monitored within IJs. Using this strain, we showed that few bacterial cells initiate colonization of an individual IJ and that these grow inside the lumen of the IJ intestine in a reproducible polyphasic pattern during colonization. In accordance with these two observations, we demonstrated that the final population of bacteria in a nematode is of predominantly monoclonal origin, suggesting that only one or two bacterial clones initiate or persist during colonization of an individual nematode. These data suggest that X. nematophila initiates IJ colonization by competing for limited colonization sites or resources within the nematode intestine. This report represents the first description of the biological interactions occurring between X. nematophila and S. carpocapsae during the early stages of the colonization process, provides insights into the physiology of X. nematophila in its host niche, and will facilitate interpretation of future data regarding the molecular events mediating this process

    Response of Ants to a Deterrent Factor(s) Produced by the Symbiotic Bacteria of Entomopathogenic Nematodes

    No full text
    The production of an ant-deterrent factor(s) (ADF) by Xenorhabdus nematophila and Photorhabdus luminescens, the symbiotic bacteria of the nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora, respectively, was examined. In addition to an in vivo assay in which bacteria were tested for their ability to produce ADF within insect cadavers (M.E. Baur, H. K. Kaya, and D. R. Strong, Biol. Control 12:231-236, 1998), an in vitro microtiter dish assay was developed to monitor ADF activity produced by bacteria grown in cultures. Using these methods, we show that ADF activity is present in the supernatants of bacterial cultures, is filterable, heat stable, and acid sensitive, and passes through a 10-kDa-pore-size membrane. Thus, ADF appears to be comprised of a small, extracellular, and possibly nonproteinaceous compound(s). The amount of ADF repellency detected depends on the ant species being tested, the sucrose concentration (in vitro assays), and the strain, form, and age of the ADF-producing bacteria. These findings demonstrate that the symbiotic bacteria of some species of entomopathogenic nematodes produce a compound(s) that deters scavengers such as ants and thus could protect nematodes from being eaten during reproduction within insect cadavers
    corecore