34 research outputs found

    Constructive pointfree topology eliminates non-constructive representation theorems from Riesz space theory

    Get PDF
    In Riesz space theory it is good practice to avoid representation theorems which depend on the axiom of choice. Here we present a general methodology to do this using pointfree topology. To illustrate the technique we show that almost f-algebras are commutative. The proof is obtained relatively straightforward from the proof by Buskes and van Rooij by using the pointfree Stone-Yosida representation theorem by Coquand and Spitters

    Quantum theory realizes all joint measurability graphs

    Get PDF
    Joint measurability of sharp quantum observables is determined pairwise, and so can be captured in a graph. We prove the converse: any graph, whose vertices represent sharp observables, and whose edges represent joint measurability, is realised by quantum theory. This leads us to show that it is not always possible to use Neumark dilation to turn unsharp observables into sharp ones with the same joint measurability relations, highlighting a caveat in the church of the larger Hilbert space".Comment: 5 page

    Topos quantum theory with short posets

    Get PDF
    Topos quantum mechanics, developed by Isham et. al., creates a topos of presheaves over the poset V(N) of abelian von Neumann subalgebras of the von Neumann algebra N of bounded operators associated to a physical system, and established several results, including: (a) a connection between the Kochen-Specker theorem and the non-existence of a global section of the spectral presheaf; (b) a version of the spectral theorem for self-adjoint operators; (c) a connection between states of N and measures on the spectral presheaf; and (d) a model of dynamics in terms of V(N). We consider a modification to this approach using not the whole of the poset V(N), but only its elements of height at most two. This produces a different topos with different internal logic. However, the core results (a)--(d) established using the full poset V(N) are also established for the topos over the smaller poset, and some aspects simplify considerably. Additionally, this smaller poset has appealing aspects reminiscent of projective geometry.Comment: 14 page

    Tarski monoids: Matui's spatial realization theorem

    Full text link
    We introduce a class of inverse monoids, called Tarski monoids, that can be regarded as non-commutative generalizations of the unique countable, atomless Boolean algebra. These inverse monoids are related to a class of etale topological groupoids under a non-commutative generalization of classical Stone duality and, significantly, they arise naturally in the theory of dynamical systems as developed by Matui. We are thereby able to reinterpret a theorem of Matui on a class of \'etale groupoids as an equivalent theorem about a class of Tarski monoids: two simple Tarski monoids are isomorphic if and only if their groups of units are isomorphic. The inverse monoids in question may also be viewed as countably infinite generalizations of finite symmetric inverse monoids. Their groups of units therefore generalize the finite symmetric groups and include amongst their number the classical Thompson groups.Comment: arXiv admin note: text overlap with arXiv:1407.147

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    Intuitionistic quantum logic of an n-level system

    Get PDF
    A decade ago, Isham and Butterfield proposed a topos-theoretic approach to quantum mechanics, which meanwhile has been extended by Doering and Isham so as to provide a new mathematical foundation for all of physics. Last year, three of the present authors redeveloped and refined these ideas by combining the C*-algebraic approach to quantum theory with the so-called internal language of topos theory (see arXiv:0709.4364). The goal of the present paper is to illustrate our abstract setup through the concrete example of the C*-algebra of complex n by n matrices. This leads to an explicit expression for the pointfree quantum phase space and the associated logical structure and Gelfand transform of an n-level system. We also determine the pertinent non-probabilisitic state-proposition pairing (or valuation) and give a very natural topos-theoretic reformulation of the Kochen--Specker Theorem. The essential point is that the logical structure of a quantum n-level system turns out to be intuitionistic, which means that it is distributive but fails to satisfy the law of the excluded middle (both in opposition to the usual quantum logic).Comment: 26 page

    Piecewise Boolean Algebras and Their Domains

    Get PDF
    We characterise piecewise Boolean domains, that is, those domains that arise as Boolean subalgebras of a piecewise Boolean algebra. This leads to equivalent descriptions of the category of piecewise Boolean algebras: either as piecewise Boolean domains equipped with an orientation, or as full structure sheaves on piecewise Boolean domains.Comment: 11 page
    corecore