238 research outputs found

    Microbial diversity gradients in the geothermal mud volcano underlying the hypersaline Urania Basin

    Get PDF
    Mud volcanoes transport deep fluidized sediment and their microbial communities and thus provide a window into the deep biosphere. However, mud volcanoes are commonly sampled at the surface and not probed at greater depths, with the consequence that their internal geochemistry and microbiology remain hidden from view. Urania Basin, a hypersaline seafloor basin in the Mediterranean, harbors a mud volcano that erupts fluidized mud into the brine. The vertical mud pipe was amenable to shipboard Niskin bottle and multicorer sampling and provided an opportunity to investigate the downward sequence of bacterial and archaeal communities of the Urania Basin brine, fluid mud layers and consolidated subsurface sediments using 16S rRNA gene sequencing. These microbial communities show characteristic, habitat-related trends as they change throughout the sample series, from extremely halophilic bacteria (KB1) and archaea (Halodesulfoarchaeum spp.) in the brine, toward moderately halophilic and thermophilic endospore-forming bacteria and uncultured archaeal lineages in the mud fluid, and finally ending in aromatics-oxidizing bacteria, uncultured spore formers, and heterotrophic subsurface archaea (Thermoplasmatales, Bathyarchaeota, and Lokiarcheota) in the deep subsurface sediment at the bottom of the mud volcano. Since these bacterial and archaeal lineages are mostly anaerobic heterotrophic fermenters, the microbial ecosystem in the brine and fluidized mud functions as a layered fermenter for the degradation of sedimentary biomass and hydrocarbons. By spreading spore-forming, thermophilic Firmicutes during eruptions, the Urania Basin mud volcano likely functions as a source of endospores that occur widely in cold seafloor sediments

    A stable isotope assay with 13C-labeled polyethylene to investigate plastic mineralization mediated by Rhodococcus ruber

    Get PDF
    Methods that unambiguously prove microbial plastic degradation and allow for quantification of degradation rates are necessary to constrain the influence of microbial degradation on the marine plastic budget. We developed an assay based on stable isotope tracer techniques to determine microbial plastic mineralization rates in liquid medium on a lab scale. For the experiments, 13C-labeled polyethylene (13C-PE) particles (irradiated with UV-light to mimic exposure of floating plastic to sunlight) were incubated in liquid medium with Rhodococcus ruber as a model organism for proof of principle. The transfer of 13C from 13C-PE into the gaseous and dissolved CO2 pools translated to microbially mediated mineralization rates of up to 1.2 % yr−1 of the added PE. After incubation, we also found highly 13C-enriched membrane fatty acids of R. ruber including compounds involved in cellular stress responses. We demonstrated that isotope tracer techniques are a valuable tool to detect and quantify microbial plastic degradation

    Hot fluids, burial metamorphism and thermal histories in the underthrust sediments at IODP 370 site C0023, Nankai Accretionary Complex

    Get PDF
    This research used samples and data provided by the International Ocean Discovery Program (IODP). The authors are grateful to the IODP and the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). We thank crew, drilling team, geologists and lab technicians on D/V Chikyu and the staff of the Kochi Institute for Core Sample Research for supporting operations. This work was supported by the ECORD research grant [2017 to MYT]; and the NERC grant [NE/P015182/1 2017 to SAB]. ZW acknowledges technical support provided by Colin Taylor at the University of Aberdeen. Petromod 2017 was provided by Schlumberger. VBH and KUH acknowledge funding from the Deutsche Forschungsgemeinschaft through the Cluster of Excellence, The Ocean Floor – Earth’s Uncharted Interface“ and Project Grant HE8034/1-1 2019. This is a contribution to the Deep Carbon Observatory.Peer reviewedPublisher PD

    Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa.</p> <p>Results</p> <p>We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section.</p> <p>Conclusions</p> <p>The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.</p

    A New Method for Quality Control of Geological Cores by X-Ray Computed Tomography: Application in IODP Expedition 370

    Get PDF
    ACKNOWLEDGMENTS This research used data provided by the International Ocean Discovery Program (IODP). We are grateful to the IODP and thank crew, drilling team, geologists and lab technicians on Chikyu and the staff of the Kochi Institute for Core Sample Research for supporting IODP 370-operations. We would like to thank Lucia Mancini for handling the editorial process and the three reviewers for submitting their helpful comments and improving the manuscript.Peer reviewedPublisher PD

    In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough

    Get PDF
    © 2018, The Author(s). The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP) Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments. [Figure not available: see fulltext.]

    Report and preliminary results of R/V POSEIDON cruise POS450, DARCSEAS II - Deep subseafloor Archaea in the Western Mediterranean Sea: Carbon Cycle, Life Strategies, and Role in Sedimentary Ecosystems, Barcelona (Spain) - Malaga (Spain), April 2 - 13, 2013.

    Get PDF
    Report and preliminary results of R/V POSEIDON cruise POS450, DARCSEAS II - Deep subseafloor Archaea in the Western Mediterranean Sea: Carbon Cycle, Life Strategies, and Role in Sedimentary Ecosystems, Barcelona (Spain) - Malaga (Spain), April 2 - 13, 2013.14230530
    corecore