25 research outputs found

    The limits of life and the biosphere in earth’s interior

    Get PDF
    Fifty years of scientific ocean drilling have shown that microorganisms are widespread deep inside the ocean floor. Microbial populations exist in both organic-matter-rich and nutrient-poor sediments (Kallmeyer et al., 2012; D’Hondt et al., 2015), in sediments that are millions of years old and are buried to over a kilometer depth (Roussel et al., 2008; Ciobanu et al., 2014; Inagaki et al., 2015), and deep inside the basaltic oceanic crust (Orcutt et al., 2011; Lever et al., 2013). In these varied environments, metabolic activity is extraordinarily low (D’Hondt et al., 2009; Hoehler and Jþrgensen 2013; Lever et al. 2015a), but microbial cells remain physiologically active (Morono et al., 2011) or survive in their dormant phases (Lomstein et al., 2012). The total amount of sub-surface biomass is still being debated (Hinrichs and Inagaki, 2012; Kallmeyer et al., 2012; Parkes et al., 2014) and the factors posing ultimate limits to deep life and the habitability of Earth remain to be resolved

    The critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model

    Full text link
    We present a new way of probing the universality class of the site-diluted two-dimensional Ising model. We analyse Monte Carlo data for the magnetic susceptibility, introducing a new fitting procedure in the critical region applicable even for a single sample with quenched disorder. This gives us the possibility to fit simultaneously the critical exponent, the critical amplitude and the sample dependent pseudo-critical temperature. The critical amplitude ratio of the magnetic susceptibility is seen to be independent of the concentration qq of the empty sites for all investigated values of q≀0.25q\le 0.25. At the same time the average effective exponent Îłeff\gamma_{eff} is found to vary with the concentration qq, which may be argued to be due to logarithmic corrections to the power law of the pure system. This corrections are canceled in the susceptibility amplitude ratio as predicted by theory. The central charge of the corresponding field theory was computed and compared well with the theoretical predictions.Comment: 6 pages, 4 figure

    Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea

    Get PDF
    Microbial production of methane is an important terminal metabolic process during organic matter degradation in marine sediments. It is generally acknowledged that hydrogenotrophic and acetoclastic methanogenesis constitute the dominant pathways of methane production; the importance of methanogenesis from methylated compounds remains poorly understood. We conducted various biogeochemical and molecular genetic analyses to characterize substrate availability, rates of methanogenesis, and methanogen community composition, and further evaluated the contribution of different substrates and pathways for methane production in deltaic surface and subsurface sediments of the Western Mediterranean Sea. Major substrates representing three methanogenic pathways, including H2, acetate, and methanol, trimethylamine (TMA), and dimethylsulfide (DMS), were detected in the pore waters and sediments, and exhibited variability over depth and between sites. In accompanying incubation experiments, methanogenesis rates from various 14C labeled substrates varied as well, suggesting that environmental factors, such as sulfate concentration and organic matter quality, could significantly influence the relative importance of individual pathway. In particular, methylotrophic and hydrogenotrophic methanogenesis contributed to the presence of micromolar methane concentrations in the sulfate reduction zone, with methanogenesis from methanol accounting for up to 98% of the total methane production in the topmost surface sediment. In the sulfate-depleted zone, hydrogenotrophic methanogenesis was the dominant methanogenic pathway (67–98%), and enhanced methane production from acetate was observed in organic-rich sediment (up to 31%). Methyl coenzyme M reductase gene (mcrA) analysis revealed that the composition of methanogenic communities was generally consistent with the distribution of methanogenic activity from different substrates. This study provides the first quantitative assessment of methylotrophic methanogenesis in marine sediments and has important implications for marine methane cycling. The occurrence of methylotrophic methanogenesis in surface sediments could fuel the anaerobic oxidation of methane (AOM) in the shallow sulfate reduction zone. Release of methane produced from methylotrophic methanogenesis could be a source of methane efflux to the water column, thus influencing the benthic methane budgets

    Ising model on 3D random lattices: A Monte Carlo study

    Full text link
    We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian random lattices with up to 128,000 approx. 503 sites which are linked together according to the Voronoi/Delaunay prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting techniques and finite-size scaling analyses we investigate the critical properties of the model in the close vicinity of the phase transition point. Our random lattice data provide strong evidence that, for the available system sizes, the resulting effective critical exponents are indistinguishable from recent high-precision estimates obtained in Monte Carlo studies of the Ising model and \phi^4 field theory on three-dimensional regular cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure

    A stable isotope assay with 13C-labeled polyethylene to investigate plastic mineralization mediated by Rhodococcus ruber

    No full text
    Methods that unambiguously prove microbial plastic degradation and allow for quantification of degradation rates are necessary to constrain the influence of microbial degradation on the marine plastic budget. We developed an assay based on stable isotope tracer techniques to determine microbial plastic mineralization rates in liquid medium on a lab scale. For the experiments, 13C-labeled polyethylene (13C-PE) particles (irradiated with UV-light to mimic exposure of floating plasticto sunlight) were incubated in liquid medium with Rhodococcus ruber as a model organism for proof of principle. The transfer of 13C from 13C-PE into the gaseous and dissolved CO2 pools translated to microbially mediated mineralization rates of up to 1.2 % yr−1 of the added PE. After incubation, we also found highly 13C-enriched membrane fatty acids of R. ruber including compounds involved in cellular stress responses. We demonstrated that isotope tracer techniques are a valuable tool to detect and quantify microbial plastic degradation.</p
    corecore