4,500 research outputs found

    Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    Full text link
    The mixed-alkali effect on the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed--alkali slowdown longer residence times and an increased probability of correlated backjumps are identified. The slowdown is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronger and more retarding for the larger ions, the smaller ions can be temporarily accommodated. Also correlations between unlike as well as like cations are demonstrated that support cooperative behavior.Comment: 10 pages, 12 figures, 1 table, revtex4, submitted to Phys. Rev.

    Strategic Foresight in multinational enterprises – a case study on the Deutsche Telekom Laboratories

    Get PDF
    Strategic Foresight activities enable companies to use weak signals to identify opportunities and threats. Research on Strategic Foresight proposes different methods, discusses their implementation and gives recommendations on how to link Strategic Foresight with other functions in an organization. Based on a literature review, we define a generic framework for the management of Strategic Foresight activities on the strategic, tactical and operational level and identify and discuss actors, methods and systems of Strategic Foresight. Building on an in-depth case study of the Deutsche Telekom Laboratories we shed light on the implementation of Strategic Foresight activities. In the discussion we focus on the interaction of methods from Consumer Foresight and Technology Intelligence. Taking an example project, we explore how Strategic Foresight is used on the operational level of innovation management. We conclude that Strategic Foresight can successfully contribute to coping with uncertainty and complexity and can feed the front-end of innovation from the market (customer needs) and technology (realization opportunities) perspective.strategic foresight; consumer foresight; technology foresight; technology intelligence; market foresight; trend analysis; future studies; future analysis; telecommunication industry

    Deep-Elastic pp Scattering at LHC from Low-x Gluons

    Full text link
    Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum transfer range 4 GeV*2 < |t| < 10 GeV*2 is planned to be measured by the TOTEM group. We study this process in a model where the deep-elastic scattering is due to a single hard collision of a valence quark from one proton with a valence quark from the other proton. The hard collision originates from the low-x gluon cloud around one valence quark interacting with that of the other. The low-x gluon cloud can be identified as color glass condensate and has size ~0.3 F. Our prediction is that pp differential cross section in the large |t| region decreases smoothly as momentum transfer increases. This is in contrast to the prediction of pp differential cross section with visible oscillations and smaller cross sections by a large number of other models.Comment: 10 pages, including 4 figure

    Compressing nearly hard sphere fluids increases glass fragility

    Full text link
    We use molecular dynamics to investigate the glass transition occurring at large volume fraction, phi, and low temperature, T, in assemblies of soft repulsive particles. We find that equilibrium dynamics in the (phi, T) plane obey a form of dynamic scaling in the proximity of a critical point at T=0 and phi=phi_0, which should correspond to the ideal glass transition of hard spheres. This glass point, `point G', is distinct from athermal jamming thresholds. A remarkable consequence of scaling behaviour is that the dynamics at fixed phi passes smoothly from that of a strong glass to that of a very fragile glass as phi increases beyond phi_0. Correlations between fragility and various physical properties are explored.Comment: 5 pages, 3 figures; Version accepted at Europhys. Let

    Cation Transport in Polymer Electrolytes: A Microscopic Approach

    Full text link
    A microscopic theory for cation diffusion in polymer electrolytes is presented. Based on a thorough analysis of molecular dynamics simulations on PEO with LiBF4_4 the mechanisms of cation dynamics are characterised. Cation jumps between polymer chains can be identified as renewal processes. This allows us to obtain an explicit expression for the lithium ion diffusion constant D_{Li} by invoking polymer specific properties such as the Rouse dynamics. This extends previous phenomenological and numerical approaches. In particular, the chain length dependence of D_{Li} can be predicted and compared with experimental data. This dependence can be fully understood without referring to entanglement effects.Comment: 4 pages, 4 figures, Physical Review Letters in pres

    Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study

    Full text link
    The origin of the non-exponential relaxation of silver ions in the crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate two-time and three-time 109Ag NMR correlation functions. The non-exponentiality is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an intrinsic non-exponentiality. Thus, the data give no evidence for the relevance of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure

    Modelling the atomic arrangement of amorphous 2D silica: a network analysis

    Get PDF
    The recent experimental discovery of a semi two-dimensional silica glass has offered a realistic description of the random network theory of a silica glass structure, initially discussed by Zachariasen. To study the structure formation of silica in two dimensions, we introduce a two-body force field, based on a soft core Yukawa potential. The different configurations, sampled via Molecular dynamics simulations, can be directly compared with the experimental structures, which have been provided in the literature. The parameters of the force field are obtained from comparison of the nearest-neighbor distances between experiment and simulation. Further key properties such as angle distributions, distribution of ring sizes and triplets of rings are analyzed and compared with the experiment. Of particular interest is the spatial correlation of ring sizes. In general, we observe a very good agreement between experiment and simulation. Additional insight from the simulations is provided about the temporal and spatial stability of the rings in dependence of their size

    Backward correlations and dynamic heterogeneities: a computer study of ion dynamics

    Full text link
    We analyse the correlated back and forth dynamics and dynamic heterogeneities, i.e. the presence of fast and slow ions, for a lithium metasilicate system via computer simulations. For this purpose we define, in analogy to previous work in the field of glass transition, appropriate three-time correlation functions. They contain information about the dynamics during two successive time intervals. First we apply them to simple model systems in order to clarify their information content. Afterwards we use this formalism to analyse the lithium trajectories. A strong back-dragging effect is observed, which also fulfills the time-temperature superposition principle. Furthermore, it turns out that the back-dragging effect is long-ranged and exceeds the nearest neighbor position. In contrast, the strength of the dynamic heterogeneities does not fulfill the time-temperature superposition principle. The lower the temperature, the stronger the mobility difference between fast and slow ions. The results are then compared with the simple model systems considered here as well as with some lattice models of ion dynamics.Comment: 12 pages, 10 figure

    Brachial plexus injury mimicking a spinal-cord injury.

    Get PDF
    Objective High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis.Clinical presentation A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department.Intervention Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion.Conclusion Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury

    Characterization of local dynamics and mobilities in polymer melts - a simulation study

    Full text link
    The local dynamical features of a PEO melt studied by MD simulations are compared to two model chain systems, namely the well-known Rouse model as well as the semiflexible chain model (SFCM) that additionally incorporates chain stiffness. Apart from the analysis of rather general quantities such as the mean square displacement (MSD), we present a new statistical method to extract the local bead mobility from the simulation data on the basis of the Langevin equation, thus providing a complementary approach to the classical Rouse-mode analysis. This allows us to check the validity of the Langevin equation and, as a consequence, the Rouse model. Moreover, the new method has a broad range of applications for the analysis of the dynamics of more complex polymeric systems like comb-branched polymers or polymer blends.Comment: 6 pages, 5 figure
    • 

    corecore