145 research outputs found

    Hure oder Muse, Beamter oder nicht?

    Get PDF

    Klaus Naumann (Hrsg.), Nachkrieg in Deutschland, Hamburger Edition:: Hamburg 2001, 576 S.

    Get PDF

    On K(,2) of Rings of Integers of Totally Real Number Fields (Birch-Tate, Steinberg, Class Number, Symbol, Zeta-Function).

    Get PDF
    We study the finite abelian groups K(,2)(o), where o denotes the ring of integers of a totally real number field. As a major tool we employ the Birch-Tate conjecture which states that the order of K(,2)(o) can be computed via the Dedekind zeta-function. The odd part of this conjecture has been proved for abelian fields as a consequence of the Mazur-Wiles work on the Main conjecture . After the preliminaries of chapter 1, we proceed in chapter 2 by deriving a formula for (zeta)(,F)(-1), where F denotes a totally real abelian number field. Using this formula we prove the congruence L (TBOND) 1 mod F:/Q for a class of large prime divisors L of #K(,2)(o). For the totally real subfields of /Q((zeta)p), p prime, we obtain that every prime q (GREATERTHEQ) 5 dividing the field degree F:/Q is a divisor of #K(,2)(o). Finally we show that a prime number p is irregular if and only if p divides the order of K(,2)(o(,F)), where F is the maximal totally real subfield of /Q((zeta)p). In chapter 3 we use results of J. Hurrelbrink and M. Kolster to prove the 2-part of the Birch-Tate conjecture for two families of abelian number fields, one of them being the totally real subfields of /Q((zeta)(,3)k), k (ELEM) /N. We compute the 2-parts of (omega)(,2)(F)(zeta)(,F)(-1) and show that the full cyclotomic fields involved have odd class numbers. In chapter 4 we combine recent results of J. Hurrelbrink and P. E. Conner with those of K. S. Brown on the values of the Dedekind zeta-function and obtain that the conditions 2(\u27 F:/Q )(VBAR)(VBAR)#K(,2)(o) and (,2)(\u27 F:/Q )(VBAR)(VBAR)(omega)(,2)(F)(zeta)(,F)(-1) are equivalent. Therefore the 2-part of the Birch-Tate conjecture holds for any--not necessarily abelian--totally real number field satisfying one (and hence both) of these conditions. Table 1 and table 2 contain the values of (VBAR)(omega)(,2)(F)(zeta)(,F)(-1)(VBAR) for totally real subfields of /Q((zeta)m), m (LESSTHEQ) 100. In table 3 we list all primes p \u3c 10000 with the property that q = (p - 1)/2 is prime and 2 is a primitive root of q

    Analyzing the Functional Properties of the Creatine Kinase System with Multiscale 'Sloppy' Modeling

    Get PDF
    In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The ‘phosphocreatine shuttle’ hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in ATP and ADP is another potential role of CK. With a mathematical model, we analyzed energy transport and damping of high peaks of ATP hydrolysis during the cardiac cycle. The analysis was based on multiscale data measured at the level of isolated enzymes, isolated mitochondria and on dynamic response times of oxidative phosphorylation measured at the whole heart level. Using ‘sloppy modeling’ ensemble simulations, we derived confidence intervals for predictions of the contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mitochondria to sites of ATP hydrolysis. Our calculations indicate that only 15±8% (mean±SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr shuttle hypothesis. We also predicted temporal buffering capabilities of the CK isoforms protecting against high peaks of ATP hydrolysis (3750 µM*s(−1)) in myofibrils. CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial ATP synthesis pulsation from 215±23 to 566±31 µM*s(−1), while amplitudes of oscillations in cytosolic ADP concentration double from 77±11 to 146±1 µM. Our findings indicate that CK acts as a large bandwidth high-capacity temporal energy buffer maintaining cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism. However, the contribution of CK to the transport of high-energy phosphate groups appears limited. Mitochondrial CK activity lowers cytosolic inorganic phosphate levels while cytosolic CK has the opposite effect

    Denker des Umbruchs: Rezension zu "Max Weber - Stationen und Impulse einer intellektuellen Biographie" von Gangolf Hübinger

    Get PDF
    Gangolf Hübinger: Max Weber - Stationen und Impulse einer intellektuellen Biographie. Tübingen: Mohr Siebeck 2019. 978-3-16-155724-

    Viable Models of Energy Metabolism: Contemplating Uncertainty in Measured Data, Parameter Estimates and Predictions

    Get PDF
    Heringa, J. [Promotor]Beek, J.H.G.M. van [Copromotor
    • …
    corecore