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8 CHAPTER 1. INTRODUCTION
1.1 Systems Biology

Over the last decade, the term Systems Biology has become pervasive throughout
many biological disciplines [Kohl et al., 2010]. Biological research has advanced
enormously from a boost in new automated technologies introduced around the turn of
the millennium. New high throughput methods allowed for collecting large amounts of
biological data, instigating research fields such as genomics, proteomics or metabolo-
mics. At that time, rapid technical progress fuelled expectations that many complex
biological processes underlying disease could soon be elucidated.

However, it is apparent that the integration of information about different com-
ponents of the biological system is inevitable in order to understand how biological
functions emerge from the interactions of single components. Rather than examining
the characteristics of isolated parts of a cell or organism, structure and dynamics
of cellular and organismal function must be investigated to understand biology at
a system level [Kitano, 2002a]. Hence, the study of the interplay between different
processes which enables biological function in the system as a whole is called Sys-
tems Biology. The aim to integrate quantitative knowledge and the emphasis on how
biological systems behave and develop over time are major aspects of Systems Biology.

1.2 Computer models in Systems Biology

The information available to understand biological systems is typically incomplete.
Many components are not accessible to direct measurement particularly under in vivo
conditions.

By encoding the available information into computational models, the processes
in the biological system can be described to a certain extent. Missing information
can then be inferred by analysing the models. A sound understanding of complex
biological systems thus requires the integration of experimental and computational
research [Kitano, 2002b].

In principle, a computational model in Systems Biology is the representation of a
biological process in mathematical terms. There are manifold ways to encode biolo-
gical information into models and the choice of formalism depends on the biological
question at hand and on the availability of measured data on the system. Often, com-
putational models consist of a set of equations describing the quantitative properties
of the system. The behaviour of the modelled system over time can be predicted by
solving the model equations. Models are usually calibrated and validated on experi-
mental data. Having a calibrated model, possible interventions to the system can be
tested in silico to prove or reject a certain hypothesis about the modelled system or
to predict the effect of certain manipulations (e.g. mutations) to the system. Exper-
imental validation of model prediction yields additional data which is then, in turn,
used to improve the computational model. The cycle of iterative model improvement
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and experimental validation constitutes a hypothesis driven approach to research in
biology [Kitano, 2002b].

1.2.1 Modelling metabolism

Metabolism is the total of biochemical processes within the cells of a living organism.
The routes connecting intake and excretion of metabolites serving important func-
tions for the organism are called metabolic pathways. The biochemical conversions
between different metabolites are catalysed by enzymes. Individual enzyme reactions
in metabolic pathways are in many cases well studied and information about these re-
actions is available in text books and in public repositories, for instance the metabolic
reconstruction of human metabolism [Thiele et al., 2013].

Despite the relatively well-known qualitative aspects of metabolic pathways which
is available nowadays, to study the physiology of an organism, quantitative knowledge
on the whole system level is desirable. The combination of experimental and compu-
tational approaches is essential to gain such knowledge on living cells and organisms.

For the most part in this thesis, we investigate the physiological properties of the
processes of energy production by mitochondria in muscle cells. As many biological
processes, energy production can be described on different levels of complexity. In
some cases, a model representation of a metabolic network describing the metabol-
ites and the conversion rates between the metabolites is enough to study a specific
problem. For other applications, such a representation might be too coarse and more
detailed kinetic descriptions have to be taken into account, for instance the binding
and dissociation constants of a metabolite to a particular enzyme. In this thesis, the
following modelling techniques were used to study energy metabolism:

<4 In the Bottom-up modelling approach, detailed models of metabolism are build
upon the experimental study of isolated components of the system. Quantitative
knowledge on single system components obtained in in vitro experiments, such
as enzyme turnover rates or molecular binding constants, is integrated on the
system level. Mathematical equations are used to describe the kinetic properties
of the reactions in the system in detail.

<4 Constraint-based modelling is usually used to estimate the velocity of metabolic
reactions (fluxes) in a given system of metabolic reactions subject to a specific
objective. The objective is generally the maximisation or minimisation of a
certain flux within the system, for instance fluxes of reactions that produce
adenosine triphosphate (ATP), a Co-enzyme that carries most energy produced
and transported in cells. In constraint based modelling, the metabolic system
is characterised by a number of constraints, for instance the constraint of mass
conservation for a system in steady-state.

4+ Carbon-13 Metabolic Flux Analysis (3C MFA) is a method to quantify fluxes
through metabolic reactions. It is based on the incorporation of stable isotopes
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(here 13C) into substrates of metabolism. The isotope distribution in interme-
diate metabolites is then measured. Analysing the data requires sophisticated
computational models and optimisation methods.

1.2.2 Uncertainty of parameters in Systems Biology models

Most computational models in Systems Biology contain parameters which describe
physical, chemical or biological characteristics and features within the modelled sys-
tem. A parameter could for example be the binding constant of a metabolite to an
enzyme, the rate of nutrition uptake by a cell or the flux through a certain biochem-
ical reaction. Since model dynamics depend on parameters, models can be calibrated
to match experimental data by adjusting their parameter values. This procedure,
often called parameter fitting, can be automated using computational routines. In
several cases, biological parameters are well determined and experimentally validated
whereas quantitative information about other parameters is completely missing.

A famous quote in theoretical physics states ‘Give me four parameters, I can fit
an elephant. Give me five and I can wag it’s tail’ [Brown and Sethna, 2003]. The
quote manifests a major challenge in modelling (biological) systems: Often, if the
parameters in a model are varied, the model is able to describe a variety of different
system responses. If parameter values are not known with sufficient precision, model
simulations can yield a variety of different outcomes when changing parameter values.
Thus, the computational model effectively becomes futile for hypothesis-testing due
to its low predictive power. Most models in Systems Biology contain parameters
that are unknown or uncertain, because either experimental validation is infeasible
or parameters have been determined under different conditions outside the scope of
the model (e.g. a reaction flux has been measured under a different temperature in a
different species).

Practically all models in Systems Biology are subject to uncertainty in the para-
meter values which may appear discouraging, since one would prefer a model to be
as descriptive and predictive as possible. However, it is possible to estimate the ef-
fect of uncertainties in parameters on the uncertainty of the model’s predictions such
that the predictions can be more realistically interpolated, making the model more
valuable. The evaluation of uncertainty of a model response with respect to changes
in parameter values has been coined as parametric sensitivity analysis [Perumal and
Gunawan, 2011].

In [Brown et al., 2004] and [Gutenkunst et al., 2007b] a method to analyse para-
meter sensitivity in Systems Biology models is introduced in which the multidimen-
sional parameter space is extensively explored using a random walk. The approach is
based on the idea that more than one valid parameter combination should be used to
extract predictions from a model. To this end, whole sets of different parameter com-
binations that can describe the experimental data (parameter ensembles) are sampled
in a random walk and used to generate model predictions. The contribution of single
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parameters or combinations of parameters that cause uncertainty in model predictions
can thereby be identified. By simulating an entire parameter ensemble, it is possible
to obtain the uncertainty of model predictions with respect to uncertainties in the
parameters directly.

In this thesis, the theoretical framework of Brown and Gutenkunst is frequently
used in order to explore parameter sensitivities in models of energy metabolism. Em-
phasis is placed on analysing the models’ sensitivity spectra with the aim to improve
the work-flow of model analysis and data fitting to yield model predictions that are
statistically more sound. To improve the predictive capacity of the models, quantit-
ative a priori information on parameter values is explicitly taken into account.

1.3 Viable models of energy metabolism

Energy metabolism comprises production, transport and consumption of energy car-
rying compounds and metabolites. We investigated various aspects of energy meta-
bolism, for example the energy production by mitochondria and the subsequent trans-
port to energy consuming sites and the citric acid cycle and glycolysis which are both
fundamental metabolic pathways in living organisms. Throughout this thesis, math-
ematical models that describe these processes have been used.

We believe that taking into account error in measured data, parameter values and
model predictions is not only helpful practice to bound the uncertainty in extracting
relevant information about biological systems, but moreover should be an elemental
part of any analysis with mathematical models. We therefore describe approaches
that consider various sources of uncertainty in order to design robust models that are
feasible, useful and thus wviable for the describing biological reality.

A general introduction on how metabolic systems can be modelled quantitatively
is provided in chapter 2. Relevant techniques of modelling are described in detail.
Further, in this chapter the creatine kinase system which is the subject of interest
throughout most chapters in this thesis is introduced. The creatine kinase enzyme
interconnects energy producing and energy consuming sites in (among others) muscle
cells. To which extent the enzyme is involved in the energy transport process is
subject to debate [Beard and Kushmerick, 2009]. The ‘phosphocreatine shuttle hy-
pothesis’ states that most energy in muscle cells produced by the mitochondria in
form of ATP is not transported to the energy consuming myofibril as such [Bessman
and Geiger, 1981]. Instead, creatine kinase mediates the transport of energy via the
high-energy metabolite phosphocreatine (PCr) [Bessman and Geiger, 1981]. We used
a simple model which captures the essentials of the creatine kinase system to investig-
ate the phosphocreatine shuttle hypothesis in cardiac muscle cells. Previous analysis
had shown that the model contradicts an obligatory transport via PCr [van Beek,
2007]. In chapter 2, basic sensitivity analysis is applied to the model to investigate
the robustness of the model response to changes in parameter values. Results show
that even moderate changes in parameter values can yield a wide range of model
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predictions. The conclusion of this analysis is that in order to challenge the phos-
phocreatine shuttle hypothesis using the simple model and the available data, a more
sophisticated approach is desirable.

This analysis is described in chapter 3. The model of the creatine kinase sys-
tem [van Beek, 2007] is calibrated with measurements of the response time of oxygen
consumption in isolated perfused rabbit hearts under different conditions. In order
to account for inaccuracies in parameter values, a random walk through parameter
space was performed [Gutenkunst et al., 2007b]. As a result, ensembles of differ-
ent parameter sets were generated. The ensembles were used to define confidence
bounds on model predictions. Because the model is sensitive to variations of para-
meters as shown in chapter 2, prior information on parameter values is explicitly
taken into account in the random walk. As prior information, measurements of the
model parameters and their standard measurement errors were collected from the sci-
entific literature. By incorporating the a priori knowledge on model parameters, the
variation in model predictions could be significantly narrowed. The resulting model
predictions are statistically sound because the possible measurement error in all data
used in the analysis is taken into account. With the framework employed in chapter
3, the contribution of PCr to energy transport in heart muscle is predicted to be
relatively low and most of the energy is transported as ATP, which contradicts the
phosphocreatine shuttle hypothesis. Since the main function of the creatine kinase
system does not appear to be the transport of energy from mitochondria to myofibrils,
other known and possible functions were tested using the model. Simulations suggest
that creatine kinase is responsible for the temporal buffering of energy resources. In
the heart muscle, large amounts of energy are stored in form of PCr which can be
released very quickly whenever the energy demand of the heart increases (e.g. when
the heart rate increases).

Creatine kinase and its product PCr does not only play a role in heart muscle,
but also in the energy metabolism in skeletal muscle tissue. In chapter 4, a whole
body model for energy conversion is used to simulate energy conversion in a cyclist in
a mountain time trial of the Tour de France. While the whole body model describes
heat production and transport, the biochemical events during muscle contraction
in the leg are described with the model used in chapters 2 and 3. Since energy
demand during cycling is characterised by large bursts of periodic muscle work, the
energy buffering functions of the creatine kinase system is investigated in silico. Since
biochemical properties in the human leg muscle differ from the previous analyses
in cardiac muscle, a new set of model parameters describing skeletal muscle energy
turnover was assembled. The modified model was validated using data from human
experiments on a bicycle ergometer in order to predict energy buffering during bicycle
racing. It is shown that creatine kinase is essential for the allocation of energy during
the bicycle race and that the buffering of mitochondrial energy production is lost if
creatine kinase was inhibited.

In chapter 5, the ensemble modelling approach from chapter 3 is applied to car-
bon transition networks. A detailed model of carbon transitions in the citric acid
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cycle, an essential pathway in muscular energy metabolism, was used to analyse data
from carbon tracer experiments in porcine cardiac muscle. The approach is based on
the incorporation of substrates which contain labelled carbon atoms into the energy
metabolism of the heart in vivo. Nuclear magnetic resonance (NMR) spectra of in-
termediate metabolites can be obtained which allow the exploration of how fast the
labelled carbon atoms travel through the pathway. As a result, the velocity of meta-
bolic reaction fluxes can be quantified by analysing the data with a detailed model of
carbon transitions within the citric acid cycle. The quantified rates of the metabolic
reactions yield valuable information about the physiology of the heart in health and
disease. As with metabolic models used in the previous chapters, carbon transition
networks are subject to parameter uncertainty. In chapter 5, a large NMR data set
from isotope labelling experiments under various experimental conditions was used.
Since the noise level in the available data was very high, the determination of uncer-
tainty in model predictions was in this case particularly crucial in order to still be able
to extract valuable physiological information from the data. By sampling parameter
ensembles that agree with the NMR data, two model parameters that can be quanti-
fied within reasonable precision limits could be identified. Also prior information from
literature was used to narrow the confidence limits on the parameter estimates. The
performance of the method was tested by estimating myocardial oxygen consumption
from the two model parameters that were quantified. The estimates were compared to
measurements that were performed independent from the carbon tracer method and
therefore were independent from the model estimates. The agreement between both
methods was reasonable, which validates the approach introduced in this chapter.
It is therefore shown that combining prior information on the velocity of metabolic
fluxes with a random walk to generate parameter ensembles is a fruitful approach in
order to quantify metabolic fluxes.

Carbon labelling experiments are not always feasible in any organism or form
of tissue. A different approach to quantify the rates of metabolic reaction fluxes is
Flux Balance Analysis (FBA). In FBA, information about reaction fluxes entering
and leaving a reaction system is integrated with a detailed stoichiometric description
of all intermediate biochemical reactions within that system. Several biophysical as-
sumptions can then be used in order to gain information about the fluxes within the
system. A central assumption in this modelling framework is the steady-state as-
sumption: if no (or a constant) outside stimulus is applied to a biochemical reaction
system, the system will reach a state at which the concentrations of the interme-
diate metabolites will not change. Using the steady-state assumption, the reaction
fluxes in the system of interest can be quantified using a mathematical optimisation
approach called linear programming, which is the central part of FBA. There is a
wealth of detailed stoichiometric information about reaction systems in various or-
ganisms which can be used to build computational models for FBA. A listing of all
relevant metabolites and reactions is referred to as a metabolic reconstruction and
over the last years, an increasing number of metabolic reconstruction databases be-
came publicly available. Chapter 6 of this thesis aims to connect existing metabolic
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reconstruction databases with analysis tools that can perform FBA. The software
tool BiGGR was developed which allows for the assembling of computational models
from several metabolic reconstruction resources and the subsequent analysis using the
mathematical algorithms required for FBA. Further, the software tool introduced in
this chapter allows for visualisation of selected parts of the assembled networks and
their estimated reaction fluxes. It is important to note that a preliminary version of
the BiGGR software was already introduced in chapter 4 (section 4.8.1). BiGGR was
therafter re-implemented and new functionality was added. The new version features
a flux estimation procedure which contemplates uncertainty in measured input data
and resulting flux estimates by combining FBA with an ensemble modelling approach.
A general description of BIGGR and its functionality can be found in the first part
of chapter 6. The second part of chapter 6 consists of the BIGGR ‘package vignette’,
which gives technical details and a step-by-step example of a flux estimation within
BiGGR using a model of human brain metabolism.

To conclude, chapter 7 discusses all results obtained in this thesis and puts the
obtained results into perspective.



Chapter 2

Robust modelling,
measurement and analysis of
human and animal metabolic
systems

X
van Beek, J.H.G.M., Hauschild, A., Hettling, H. and Binsl, T.W.(2009)

Robust modelling, measurement and analysis of human and animal metabolic systems.
Philosophical Transactions of the Royal Society A, 367:1971-1992
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2.1 Abstract

Modelling human and animal metabolism is impeded by the lack of accurate quant-
itative parameters and the large number of biochemical reactions. This problem may
be tackled by: (i) study of modules of the network independently; (ii) ensemble sim-
ulations to explore many plausible parameter combinations; (iii) analysis of ‘sloppy’
parameter behaviour, revealing interdependent parameter combinations with little in-
fluence; (iv) multiscale analysis that combines molecular and whole network data; and
(v) measuring metabolic flux (rate of flow) in wvivo via stable isotope labelling. For
the latter method, carbon transition networks were modelled with systems of ordinary
differential equations, but we show that coloured Petri nets provide a more intuitive
graphical approach. Analysis of parameter sensitivities shows that only a few para-
meter combinations have a large effect on predictions. Model analysis of high-energy
phosphate transport indicates that membrane permeability, inaccurately known at
the organellar level, can be well determined from whole-organ responses. Ensemble
simulations that take into account the imprecision of measured molecular paramet-
ers contradict the popular hypothesis that high-energy phosphate transport in heart
muscle is mostly by phosphocreatine. Combining modular, multiscale, ensemble and
sloppy modelling approaches with in vivo flux measurements may prove indispensable
for the modelling of the large human metabolic system.

2.2 Introduction

Metabolism consists of the biochemical reactions taking place in the body. It is
the counterpart in the molecular domain of the energy transformations and signalling
taking place in the cells and the body as a whole. Metabolism is therefore of enormous
importance to human and animal physiology and pathology. For instance, instead
of studying the tremors in patients with Parkinson’s disease, it may often be more
efficient to study the synthesis of the neurotransmitter dopamine, which is involved
in this disease, in cultures of human cells.

One difficulty in the study of human and animal metabolic networks is that the
total system is very large and strongly interconnected. In addition, some metabolic
pathways overlap extensively [Ma et al., 2007] and hence influence each other’s be-
haviour. This causes difficulties in studying them separately. Qualitatively, much is
known about metabolism, from micro-organisms to higher life forms. This means that
we often know which metabolites take part in metabolism and how they are connected
via reactions in the metabolic pathways. For the most part, biochemical reactions are
very similar throughout all kingdoms of life, which to some extent may simplify the
modelling process: many reactions and parts of pathways can be transferred from
models of one organism to another. The possibility for such simplification is limited
because the regulation of metabolic pathways and the mechanisms of regulation of
enzymes vary between species and must in many cases be adapted to build accur-
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ate models for other species. Although there is a certain universality in metabolic
systems, even between bacteria and higher organisms, regulation and quantitative
behaviour of the models has to be adapted and fine tuned for each organism. This
often means quantitative changes in pathways that remain qualitatively similar.

In contrast to qualitative properties, little is known about the quantitative para-
meters of these metabolic systems, especially not under in vivo conditions. Parameters
are not yet available or perhaps not even measurable. This lack of accurate kinetic
parameters is an important impediment for modelling human and animal metabolism.
Here, we describe strategies for robust modelling of metabolic systems, which means
that we deal with the limited accuracy of metabolic parameters. We try to obtain
insight and useful predictions in the face of limited knowledge about the metabolic
system.

The problem of insufficient quantitative knowledge may be tackled by: (i) modu-
larisation of the network to study parts of the system one by one and independently;
(ii) making use of ensemble simulations to explore the range of plausible parameter
values in multidimensional parameter space; (iii) determining combinations of para-
meters that have either large or very small effects on model predictions when the
parameters are changed in a correlated way (’sloppy’ parameter behaviour, see below);
(iv) multiscale analysis that combines information from the molecular, biochemical
and organ levels; and (v) measuring metabolism under in vivo conditions, providing
important data on biochemical network function as a whole.

While these are important strategies to bridge the gap between the qualitative
knowledge of metabolism and a comprehensive quantitative analysis of the human
and animal metabolic system, another important gap exists between mathematical
modellers and experimentalists. Many experimental scientists have difficulties in un-
derstanding mathematical and computational models. Such models of biochemical
systems are presently often formulated as systems of ordinary differential equations
(ODEs). Each differential equation represents the rate of change of a metabolite pool
caused by the chemical reactions transporting mass into and out of that pool. For
many experimental scientists, this approach is probably not appealing because it is
not in line with their intuition. For this reason, we will discuss a more graphical
approach, provided by Petri nets, which is accurate enough for many purposes and
close in structure and functioning to the metabolic pathways that it represents. This
approach may help experimental scientists to formulate and use models of metabolic
pathways more efficiently.

2.3 From qualitative knowledge on metabolism to
large-scale quantitative modelling

Textbooks of biochemistry and an enormous number of publications in the literature
describe the types of molecules that have been discovered in the bodies of humans and



18 CHAPTER 2. ROBUST MODELLING OF METABOLIC SYSTEMS

animals. Many biochemical reactions, catalysed by enzymes, connect the metabolites
as they react with each other or are formed from each other. Sequences of enzymatic
reactions are connected in metabolic pathways. The Boehringer chart, which shows a
large number of reactions and their connections, has decorated the walls of biochemical
laboratories for many decades now. Recently, several metabolic system databases have
been assembled. The KEGG [Kanehisa et al., 2012], Reactome [Croft et al., 2011] and
PathwayCommons [Cerami et al., 2011] databases, for instance, list a great number of
reactions in many pathways. Bernard Palsson and colleagues built a reconstruction of
human metabolism in silico [Duarte et al., 2007]. A second reconstruction of human
metabolism was published [Ma et al., 2007]. In addition, a database exists that
contains the small metabolites found in the human body, the Human Metabolome
database [Wishart et al., 2007].

There is a remarkable difference between metabolism as portrayed in textbooks,
where dominant fluxes (rates of flow) in major pathways are treated, and the con-
nectivity of metabolism as found in an in silico reconstruction of human metabolism
[Duarte et al., 2007]. The textbook version of the tricarboxylic acid (TCA) cycle,
also known as the Krebs cycle, usually describes the TCA cycle as an ordered series
of reactions and does not emphasise the many existing side reactions. The textbook
mental picture of the TCA cycle is almost that of a distinct module. A close look at
the comprehensive in silico description shows that the TCA cycle intermediates are
substrates and products of numerous side reactions, which connect the TCA cycle
intermediates extensively with the rest of metabolism. Kinetically, it may be true
that the TCA cycle reactions dominate, but in reality its intermediates are part of
an extensive metabolic network. To understand this complex densely interconnected
metabolic system under all conditions, it would be very useful to have a dynamic
model of metabolism that addresses the full network connectivity. If such a model
proves to predict metabolic network function reasonably, it could in the future also
help to regulate metabolism under disease conditions.

The lack of accurate kinetic equations and parameters is clear, but even if all the
parameters are known with reasonable accuracy, this does not mean that metabolite
levels or metabolite fluxes can be calculated with good precision. Even for a relatively
‘simple’ organism such as yeast, with kinetic measurements collected to characterise
all the enzymes of the glycolytic pathway [Teusink et al., 2000], it turned out that the
prediction of pathway flux and metabolite levels in the pathway was of rather limited
accuracy.

Given that there is so much information available on the connectivity of metabol-
ism, the question may be posed whether it is timely to start building quantitative and
dynamic models of human and animal metabolism. The answer is clearly positive.
On the one hand, much experimental data have been gathered, but on the other,
understanding of the metabolic system is still very limited. Gradually, by trial and
error, building a more comprehensive model of the human metabolic system may help
to integrate and understand the enormous amount of experimental information on
human and animal metabolism. Building a valid model will be possible only by mak-
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ing predictions on new experiments and correcting the model if the predictions prove
wrong. In this way, dynamic models of metabolism, containing many pathways and
metabolites, may prove their value to integrate the extensive knowledge on thousands
of metabolites, with reactions catalysed and regulated by thousands of gene products.
It is a major challenge to systems biochemistry to develop such a quantitative descrip-
tion of human metabolism, which integrates all biochemical and molecular biological
knowledge and explains most experimental findings. However, because the mind of
an ordinary scientist is, in general, insufficient to contain all the information available
on the human biochemical system, robust modelling and analysis techniques making
use of all available information are necessary. This becomes even more desirable when
analysing and predicting metabolic system behaviour during a disease process or an
experimental or therapeutic intervention. Because it is inevitable to face the chal-
lenge of developing models of human and animal metabolism, there is a need to deal
with the large scale of the system and in particular with the substantial number of
imprecisely known kinetic parameters.

2.4 Strategies for quantitative modelling of meta-
bolic systems

There exist different strategies to deal with the large scale of the human biochemical
system and with the incomplete quantitative knowledge of the parameters character-
ising metabolic processes. Some robust approaches are as follows.

<4 Modularisation of the network to study parts of the entire system in detail, which
can be experimentally ‘isolated’. Thereafter, the whole system is assembled from
such well-characterised parts. This approach may not be possible in all or even
most cases, but is rewarding if feasible because the biological function of a small
group of molecules can be accurately characterised.

<4 Application of ensemble simulations to explore the range of plausible parameter
values. To this end, many simulations are done with different parameter sets
that cover the plausible part of multidimensional parameter space, taking cor-
relation between the parameters into account. Importantly, such simulations
can also be used to explore the effect of measurement noise on the confidence
regions of parameters estimated from experimental data.

<4 Determination of parameter combinations that are shown by analysis to have
large or small effects on model predictions when changing in a correlated way.
The former represent ‘stiff” directions in parameter space while the latter depict
‘sloppy’ directions in parameter space. The approach of finding those parameter
combinations has been termed ‘sloppy modelling’ [Brown et al., 2004, Guten-
kunst et al., 2007a,b]. This does not mean sloppy work by the scientists who
design the model, but emphasises that some of the combinations of parameters
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in the model exert a weak influence on the model prediction. Often strong cor-
relations within groups of parameters are discovered, which together define the
‘stiff” and ‘sloppy’ directions.

<4 Application of multiscale analysis, which means that measurements at various
aggregation levels are taken into account: information measured at the level
of molecules, biochemical pathways, organelles, cells and organs can thus be
combined. For instance, not only the properties of enzymes or isolated mito-
chondria are incorporated in the analysis, but also the measured response of
a whole pathway or network of connected enzymes and organelles in the cell.
For instance, the time course of metabolite levels or metabolic flux (rate of
flow) in the pathway in response to stimulation of the pathway provides data
at the pathway level. Experimentally, this may be accomplished by measuring
the time course of adaptation to altered cellular workloads, such as increased
muscle contraction frequency, neural firing rate or secretion of hormone. Yet
another example is the measurement of metabolic fluxes in specific pathways
under various steady-state conditions in relation to the metabolite levels in the
pathway.

<4 Measuring metabolism under in vivo conditions. We describe computational
methods to quantify metabolic fluxes from experimental measurements under
in vivo conditions. This can, among other ways, be done by providing substrates
for metabolism that are labelled with stable isotopes, and subsequently meas-
uring the incorporation of the label in the network’s metabolites. The latter
type of measurements define the operation of the metabolic system under the
in vivo working conditions and thereby provide important information on the
functioning of the intact living system.

We will start with a description of flux measurements because it provides a simple
example of a model of a metabolic system. Such measurements provide an important
input for the multiscale approach and show examples of the ‘sloppiness’ of parameter
space.

2.5 Measuring metabolic fluxes in vivo with stable
isotopes

Metabolic fluxes reflect cell function and dynamic adaptation of living organisms
to their environment. Given the incompleteness of available kinetic parameters to
dynamically simulate metabolism, it is very useful to determine the reaction rates in
metabolic networks experimentally. Common isotope experiments are, for instance,
done in experimental animals, human beings and micro-organisms, and entail the
infusion of isotope-labelled substrate into the metabolic system. These isotopes are
distributed by metabolic fluxes among the metabolites, usually until the isotopic
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steady state is reached. The amount of isotope incorporation is measured by nuclear
magnetic resonance spectroscopy (NMR(S)) or mass spectrometry (MS) in chosen
metabolites. This allows us to quantify metabolic fluxes via computational modelling
and analysis, even in cases where kinetic parameters are missing [Kelleher, 2001,
Wiechert, Sherry et al., 2004, Kelleher, 2001, Antoniewicz et al., 2007]. However,
measurements in tissue samples taken after a steady state of label incorporation is
reached only give insight into the relative fluxes in different pathways. Especially in
micro-organisms, substrates enriched with stable isotopes are often given for a long
time until incorporation in small metabolites and proteins has reached a steady state.
Hence, experiments become long and costly. By contrast, if steady states are short, as
in humans and animals, this common approach will not be accurate due to continuous
changes in the system. Yet another obstacle is destructive measurement techniques
such as MS, which do not allow us to measure the time course of isotope incorporation
in the same small tissue region. It is impossible to take multiple samples if there is
little material available, as may be the case with tissue biopsies and in cell cultures.

Therefore, we have recently developed a method to define the time course of isotope
incorporation and to quantitate metabolic fluxes by analysing a single sample taken
at a single time point [van Beek et al., 1998, 1999]. For this method, it is essential that
the sample is collected before the attainment of a steady state of isotope incorporation.
Despite taking only a single measurement, several metabolic fluxes can be quantified
by computational model analysis of the measured isotope incorporation in the meta-
bolites in the tissue sample. This new experimental protocol to quantify metabolic
fluxes is named ‘labelling with isotope for pre-steady-state snapshots’ (LIPSSS). The
isotope incorporation data are analysed with a computer package called FLUXSIMU-
LATOR [Binsl et al., 2010b]. The LIPSSS protocol has in common with other isotope
methods that a substrate labelled with isotopes is infused into the metabolic system
of interest. However, in contrast to many other experimental protocols, in the LIPSSS
protocol a single snapshot of stable isotope incorporation in metabolites is taken be-
fore the steady state of isotope incorporation is reached. This makes experiments
shorter and cheaper. Furthermore, it facilitates in vivo experiments in mammals
where metabolic steady states persist only briefly.

The quantification of metabolic fluxes from single time-point measurements is
possible since the time course of isotope incorporation into metabolites depends on
(i) the amount of isotopic material given, (ii) the sizes of the metabolite pools through
which the label flows, with larger transit times of label caused by larger pool sizes,
and (iii) the flux sizes that transport the isotopic material between the metabolites,
with larger fluxes leading to shorter transit times for given metabolite pool sizes.
Hence, at every point in time during the dynamic phase before isotope steady state
is reached, each metabolite pool contains a characteristic composition of different
isotope combinations, called isotopomers. These isotopomers within the metabolite
pool determine distinct peaks measured with NMRS or MS. These peaks are calculated
from models that contain the carbon transitions, usually already known from earlier
experiments. The connectivity of metabolites at the carbon level is found in the
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Figure 2.1: (a) Example of an artificial metabolic network model illustrated by its carbon transition
network representation. The model consists of four metabolites A, B, C and D. To make the network
as stmple as possible to illustrate the principles, A, C and D are assumed to be compounds containing
a single carbon only, while B is assumed to contain two distinct carbons, respectively. Metabolites are
each represented by a rectangle, which contains one or more carbons represented by circles. The grey
circle in metabolite A represents a 13C' isotope, which starts to enter the system after 13C-enriched
substrate is provided at t=0, and the white circles represent 12C present at 99% natural abundance.
The carbon atom in A enters metabolite B in the C1 position and after cycling through the system
also provides the C2 atom of metabolite B. Isotopes in two different positions in the same molecule
usually yield different signals in NMRS. Arrows indicate for all carbon atoms their origin and
target position in the metabolites during carbon transitions mediated by the chemical reactions. (b)
All possible isotopomers (Y2C1-12C2, solid line; 3C1 —12 C2, long dashed line; 12C1 =13 C2, short
dashed line; 13C1 —13 C2, dot-dashed line) of metabolite B and their time course after metabolite A
is enriched with Y3C at t=0. The time course of fractions of isotopomers is dependent on the fluz v
in the metabolic pathway, and reversely the flux v may therefore be quantified from the isotopomer
content.

scientific literature or databases.

An example of isotopomer fractions evolving dynamically over time in a simplified
metabolic pathway is given in Figure 2.1. The measurements are analysed compu-
tationally with our computer package FLUXSIMULATOR to quantitate the metabolic
fluxes. To this end, the experimental protocol is continuously simulated by FLUXSIM-
ULATOR while different parameter estimates are explored by an algorithm to optimise
the fit of the model to the measured data. In each step, using the simulated isoto-
pomer fractions of the FLUXSIMULATOR simulation the corresponding nuclear mag-
netic resonance (NMR) multiplet intensities are calculated. The parameter estimates
are provided by a nonlinear parameter optimisation routine [Nelder and Mead, 1965]
and the calculated multiplets are compared in each optimisation step with the ex-
perimentally measured multiplets via the sum-of-squares criterion until a reasonable
match between multiplets and model prediction is found (Figure 2.2).

FLUXSIMULATOR enables the user to implement metabolic models and to perform
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flux estimation in an efficient and user-friendly manner. In many existing simulation
software packages, metabolic models are specified directly by their mathematical rep-
resentation via ODEs. By contrast, FLUXSIMULATOR. uses a straightforward specific-
ation of the metabolic pathway via three plain text files. Based on this specification,
the entire system of ODEs is assembled and simulated automatically [Binsl et al.,
2010b]. This enables biomedical researchers to easily specify models that consist of
hundreds of equations in a more flexible way than the error-prone implementation of
the ODEs by hand. To illustrate the usefulness of automatic model assembly, the
ODEs representing the dynamics of the simple metabolic model in Figure 2.1 are
given below:

dAlZCl dAl3Cl

7 = T 0 (2.1)
dBioiecy  _ (ArzciDioy — Breoines)v (2.2)
dt [B] '
dBisciizga _ (AisciDizgy — Bigiizes)v (2.3)
dt [B] '
dBicyscs  _ (ArzciDiscr — Broiisce)v (2.4)
dt B]
dBisgiscs  _ (AsciDiscr — Bisgiisga)v (2.5)
dt [B] '
dCrcyr _ (Brcizcs + Brosces — Crec)v (2.6)
dt [C] '
dCscy_ (Buscizez + Biscuscs — Cisen)v (2.7)
i C]
dDiz2cq (Cizgy — Dizgy)v
woL - 5 (2.8)
dDiscy (Cisgy — Disgy)v
woL - 5 (2.9)

The metabolite symbols A — D in these equations give the fractions of these pools
taken up by the isotopomers given by the subscript. The metabolite symbols A — D
in square brackets indicate the amount per gram of dry tissue mass. The time course
of the labelled substrate for the pathway (here, A) is determined by the experimenter
who designs the label infusion protocol. Equation 2.1 indicates that the experimenter
has arranged to keep the labelling state of pool A, which is infused, constant after
stepping to a new value at ¢t = 0. The flux v in pmol * min™! x g~! of dry mass
of tissue is constant throughout the circular pathway. This presents a simple model
representation of a metabolic cycle, similar to, for instance, the TCA cycle.

It is of course not very difficult to implement the ODEs for the system in Fig-
ure 2.1 by hand in a computer program. However, this becomes a tedious task for
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Figure 2.2: Flowchart of the algorithm used for parameter estimation.

extensive systems with metabolites containing more than two carbon atoms [Binsl
et al., 2010b]. In particular, for each metabolite containing five carbon atoms, such
as a-ketoglutarate in the TCA cycle and glutamate, 32 differential equations must be
added to the ODE system. In FLUXSIMULATOR, these equations, similar to equations
2.1-2.9, are assembled based on simple textual information. In a text file, the brief
statement A1:B1 D1:B2, for instance, indicates that atom 1 of metabolite B originates
from atom 1 of metabolite A, and atom 2 of metabolite B originates from atom 1 of
metabolite D.

FLUXSIMULATOR is implemented as a computer package realized in the ‘R’ pro-
gramming language and environment, which is available for the most common oper-
ating systems such as MS WINDOWS, UNIX and Mac OS. Owing to the on-the-fly
C code generation of the model, followed by compilation and back loading of the dy-
namic library, the simulation time for a model consisting of approximately 200 stiff
ODE:s is of the order of 0.1s on a 3GHz Pentium-based desktop computer. Paral-
lelisation and execution on a cluster computer will enhance the computational speed
further. ‘Embarrassingly parallel” execution to analyse multiple datasets each on a
single processor was easily accomplished. Parallelisation of parameter optimisation
on one dataset has not been implemented yet but would be straightforward using, for
instance, the R package snowfall.

The approach of performing a LIPSSS experiment in combination with analysis
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and flux estimation with the FLUXSIMULATOR computer package and nonlinear para-
meter optimisation was experimentally validated. To that end, the flux in the TCA
cycle and exchange with the directly related amino acids glutamate and aspartate was
determined in tissue samples from porcine cardiac tissue in vivo. The TCA cycle flux
represents the final pathway of aerobic energy conversion, tightly coupled to oxygen
consumption in the mitochondria. Excellent correlation (r=0.90) was found between
flux in the TCA cycle calculated from NMR measurements on extracts of the cardiac
tissue samples after 5.5min infusion of 3C labelled acetate in the coronary artery
and “gold standard” measurements of oxygen consumption on the heart in situ.

Experimental protocols for isotope labelling experiments were designed based on
computer simulation with the FLUXSIMULATOR package. Various experimental pro-
tocols, e.g. infusion time of the isotope-labelled substrate or the isotopic composition
of the substrate, were simulated. The simulation shows the dynamic development of
isotopomer fractions in one or more metabolite pools, and in that way demonstrates
how absolute isotopomer composition and, perhaps equally important, the ratios of
various isotopomer fractions at a certain point in time depend on the metabolic flux
(Figure 2.1b). It is also possible to add realistic measurement noise to the simulated
values at a certain point in time and then to simulate the process under more realistic
conditions. This gives information about the model’s complexity and parameter iden-
tifiability, and makes it possible to choose the experimental protocol with the most
accurate and comprehensive measurement results.

Care must be taken that the model of the metabolic pathway and carbon distri-
bution routes is compatible with the organ and cell type studied. The model for the
cardiac study above was in particular designed and tested for heart muscle in vivo.
Although the metabolic pathways of the TCA cycle and related amino acids incor-
porated in this model are almost universally found in other organs and cell types,
the activity of various anaplerotic pathways varies under experimental conditions.
Therefore, the models of the metabolic pathways and of carbon distribution must be
adapted to accurately reflect the precise cell type under study. It is desirable that
the model’s suitability to accurately quantitate metabolic fluxes is examined on an
organ-by-organ and cell-type by cell-type basis.

Using FLUXSIMULATOR, ensemble simulations to explore the ranges of parameter
values (see section 2.9) or the assessment of sloppy parameter sensitivity patterns
and spectra (see section 2.7) are easy. The analysis of parameter combinations by
simulation enables the user to decide which parameter combinations can be estimated
precisely and which are imprecise and can potentially be fixed at certain values or kept
free to take care of sloppy directions in parameter space [Gutenkunst et al., 2007a,b].

2.6 Modelling metabolic systems modularly

To analyse complex metabolic systems, it is most useful if one can divide large net-
works into modules that can be isolated conceptually and experimentally to be studied
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independently in detail. A module is an independently operable unit that is part of
a whole. An example of the modular approach is the experimental isolation of the
adenine nucleotide-creatine phosphate module in muscle metabolism [van Beek, 2007,
Van Beek, 2008]. Although this module is small, not all the parameters of its com-
ponents were reliably known a priori from the molecular and organellar level. The
remaining parameters were estimated by combining information from the molecular
and the whole-system levels (see section 2.8).

Models such as the carbon transition network (CTN) in Figure 2.1 are usually also
part of a bigger system. If the fluxes in the pathway of Figure 2.1 dominate strongly
over those entering and leaving via side paths, then it is possible to study this model
as a module. It is probably difficult to divide the metabolic system completely into
modules that can be studied independently, because metabolic pathways overlap and
interact extensively. However, if it is possible to study a certain part in isolation,
this makes it possible to define the function of that part of the system accurately.
Connecting the modules again to form the whole system is an ideal strategy, which
we must fear is only partially feasible.

2.7 Sloppy parameter behaviour

Quantitative mathematical models of metabolic or signalling pathways usually contain
tens or even hundreds of parameters describing the kinetics of molecular interactions
within the system. Sufficiently precise parameters are essential for useful predictions
based on the model. Experimental determination of all kinetic parameters of the
system, however, often proves to be difficult or even impossible. This is either be-
cause not all components can be isolated or because isolation procedures damage the
component. Furthermore, intracellular operating conditions are virtually impossible
to reproduce in vitro. Hence, the estimation of unknown parameters poses a major
challenge in mechanistic modelling of biological processes.

The total set of unknown model parameters can be constrained collectively by
fitting different parameter combinations to experimental data. This is accomplished
by minimising a cost function, e.g. a least-squares distance measure between model
prediction and experimental data points, which reports how well a set of parameters
fits the available data. In many cases, a variety of different parameter combinations
agree with similar cost with the available data. One might then often hear the criticism
that the model is over-parametrised and that parameters cannot be determined with
sufficient accuracy. This may, at first glance, seem to disqualify such an attempt to
characterise the parameters, but we will show below that it is possible to live with
uncertainty in some combinations of parameters and still obtain very useful predictions
or useful quantification of some of the parameters.

It turns out that there are sloppy parameter combinations that do not signi-
ficantly alter the simulation outcome of a model. System parameter combinations
varying along sloppy directions in parameter space are therefore not well constrained
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Figure 2.3: Sloppy parameter space. On the ordinate and abscissa are two model parameters. The
contour lines give locations in parameter space with equal deviation from values predicted from
the reference parameter set that best describes the available experimental data. This deviation is
quantitated as the sum of squares (SSQ) between the predicted values for the indicated parameter
location and the prediction from the reference dataset. (a) A linear model. (b-d) The results for
a single nonlinear carbon transition model with approzimately 50 carbon transitions and five para-
meters P| — Ps. The contours in (b-d) reflect equal SSQ for nine NMR data points reflecting the
isotopomer composition of metabolites (Figure 2.1).

by experimental data. Other directions (stiff directions) can be well constrained, with
small parameter variations yielding significant changes in predictions. An example of
sloppy parameter behaviour is given in Figure 2.3.

The contours in this plot give the locations of equal deviation of model prediction
from the result yielded by the best ('reference’) parameter set for the data point.
Figure 2.3a represents a model that is linear in the parameters P4 and Pp. Figure
2.3b-d represents a model of carbon transitions with five parameters, which is an
extended version of the model of Figure 2.1. Note that parameters may show strong
dependencies: in Figure 2.3a, a joint increase in P4 or Pp results in small changes in
model prediction. This constitutes the long axis of the ellipse in Figure 2.3a, which
is termed a sloppy direction in parameter space. In the case where P4 changes in the
direction opposite to that of Pg, the prediction by the model changes briskly along
the short axis of the ellipse. This is termed a stiff direction in parameter space. In
the nonlinear case of Figure 2.3b the contours are not ellipsoidal, although the inner
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contours can be approximated by ellipses. Note that the carbon transition model
in Figure 2.3b shows a correlation between P; and P, with short and long axes of
the same length order. The relationship between P, and Ps in Figure 2.3c is closer
to the linear case. Parameter P, in Figure 2.3d can vary widely with little effect
on the prediction by the model, and there is a large difference in the length of the
short and long axes of the contour. The ratio of the axes of ellipsoids approximating
such contours can reach values of the order of 1000 in many systems biology models
[Gutenkunst et al., 2007b]. Parameter sensitivity analyses on many metabolic and
signalling networks taken from the BioModels database [Le Novere et al., 2006] showed
that all these models have sloppy sensitivity spectra and that many parameters show
a high degree of uncertainty [Gutenkunst et al., 2007b]. The dynamic behaviours
of all analysed models depend on only a few stiff parameter combinations. Sloppy
sensitivity spectra appear to be a universal property of systems biology models.

A simple example for a sloppy parameter combination can be given as follows.
Consider a chemical side reaction of a linear metabolic pathway that follows the law
of mass action with rate constants k. and k_ for forward and backward reactions,
respectively. If the reaction is very fast relative to the rest of the biochemical network
it is part of, it can be characterised solely by its equilibrium constant K = ki /k_
[Brown et al., 2004]. Both rate constants can be changed freely by the same factor
without affecting K. In the model, the parameters k; and k_ represent removable
degrees of freedom and they can be consolidated to one single parameter capturing
the essential behaviour of the reaction.

The sloppy and stiff directions in parameter space are determined by calculating
the eigenvectors of the Hessian matrix of the sum-of-squares function in the sloppy
modelling approach [Brown et al., 2004, Gutenkunst et al., 2007b]. A similar approach
to unveil more or less hidden correlations between parameters is principal component
analysis (PCA) on a matrix, which describes parameter influence on model behaviour.
Both methods identify linear combinations of parameter sensitivities that account
for the major variation in the simulation outcome of a model. Those combinations
that represent independent directions in parameter space can provide a basis for
model reduction (e.g. [Gokulakrishnan et al., 2006]) in which negligible parameters
are removed from the system in order to reduce complexity. A specific example of
eigenvector decomposition of a model and what it reveals about the components of
the model and their relations is given below (see section 2.8).

For a model of nerve growth factor signalling, [Brown et al., 2004] showed that
individually determined experimental parameter measurements, e.g. obtained on isol-
ated molecules, must be extremely precise in order to yield reasonable predictions of
integrated network behaviour. They show that model parameters fitted collectively
to time-course data on signal protein phosphorylation perform much better for model
predictions of responses to new experimental interventions. Some parameter com-
binations can be determined accurately in mechanistic models of biological processes,
while other combinations are ill determined but also do not matter so much for further
predictions.
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Figure 2.4: Scheme of the transport of high-energy phosphate groups from the mitochondrion into
the cytosol in the muscle cell. The figure was generated using the software package CELLDESIGNER
[Funahashi et al., 2003].

To make useful predictions, we can do a set of simulations with parameter com-
binations from the part of parameter space where it is plausible that parameter com-
binations are located. The part of parameter space considered should be compatible
with the already available experimental data. This is termed an ensemble approach.
It turns out that the ensemble prediction of the response in a new experiment can
still be constrained to a useful small range.

2.8 Module for high-energy phosphate group trans-
fer in heart muscle

In the following, we will illustrate the sloppy modelling ensemble approach by the
analysis of a small model, published previously [van Beek, 2007]. This model describes
the transport and buffering of high-energy phosphate groups in heart muscle and is
used to analyse the dynamic adaptation of oxidative phosphorylation in the muscle
cells to changing workloads. The model is publicly available in the BioModels database
[Kongas and van Beek, 2007] and in the CellML model repository. A ‘skeleton model’
approach was chosen, meaning that only key elements that regulate the adaptation of
adenosine triphosphate (ATP) synthesis in the mitochondrion to increased cytosolic
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ATP hydrolysis in the muscle cell are incorporated (Figure 2.4).

After ATP has been synthesised in the mitochondrial matrix and exported to the
mitochondrial intermembrane space (IMS), its high-energy phosphate group can be
transported further into the cytosol (CYT) in two different ways, either by direct
diffusion of ATP itself through the mitochondrial outer membrane (MOM) or by the
so-called ‘phosphocreatine (PCr) shuttle’, which operates as follows. In the IMS, one
high-energy phosphate group of ATP is transferred to creatine (Cr) to form PCr, which
then diffuses through the membrane into the cytosol. In the cytosol, the phosphate
group of PCr is then transferred to adenosine diphosphate (ADP) to form ATP. The
reactions are catalysed by two isoforms of creatine kinase (CK), one mitochondrial
form (Mi-CK) and one cytosolic form (MM-CK), respectively. The input of the model
is ATP hydrolysis, given by a forcing function that represents the experimentally
measured changing muscle workload. Inorganic phosphate (P;) together with ADP
is then transferred to the mitochondrial matrix to serve as the substrate for ATP
synthesis. The model consists of 10 ODEs, one for each of the five metabolites in
the cytosol and for the same metabolites in the IMS, and has 24 free parameters for
enzyme kinetics and mitochondrial membrane permeability (see [van Beek, 2007] for
details).

Metabolite and enzyme levels, as well as kinetic constants, had been experiment-
ally determined and were collected from the scientific literature. For the permeability
of the MOM to ATP and ADP, values from different experiments seemed to vary
over a large range: its reported values differ from 0.16 to 85 uM * s~! [van Beek,
2007]. This may be due to damage to the interface of the mitochondria incurred dur-
ing isolation from the cell or during removal of the outer cell membrane by chemical
treatment. Simulation with the model showed that the dynamics of adaptation of
oxygen consumption in the mitochondria depends strongly on MOM permeability.
ADP permeability was therefore optimised to measurements with oxygen electrodes
in the venous outflow from the heart as a whole corrected for the transport time
in the coronary vessels, showing that the oxygen consumption in the mitochondria,
which is directly linked to oxidative phosphorylation (OxPhos), increases with a gen-
eralised time constant of 3.7 s, in response to a step increase in electrically paced
heart rate. With ADP permeability known, the behaviour of the system could be
predicted. For instance, it was predicted that an increased expression of the Mi-CK
leads to faster dynamic adaptation of oxidative phosphorylation, while an increased
expression of MM-CK leads to slower dynamic adaptation of oxidative phosphoryla-
tion. Furthermore, it was predicted that the CK reaction leads to buffering of the
oscillation of ADP in the cytosol and of oxidative phosphorylation in the mitochon-
dria. However, very surprisingly, CK activity also leads to lower levels of inorganic
phosphate, a breakdown product of ATP, which may inhibit contractility. The sloppy
and stiff directions in parameter space (corresponding to the long and short axes of
the ellipsoids; Figure 2.3) for this model were determined by calculating the eigen-
vectors of the Hessian matrix of the sum of squares. In the four eigenvectors with the
largest eigenvalues, the coordinates of the parameters of several molecular processes
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show up strongly. These are, respectively, oxidative phosphorylation, MM-CK, Mi-
CK and the permeability to ADP of the MOM. An increased capacity for oxidative
phosphorylation gives similar effects to increased affinity of oxidative phosphoryla-
tion to ADP and P; in the eigenvectors with the three largest eigenvalues. A group
of parameters for MM-CK and independently a group of parameters for Mi-CK are
also found in the eigenvectors. The parameters of the equations of a single molecular
process are usually coupled in a group in the eigenvectors. However, the eigenvectors
tend to show combinations of molecular processes that are not necessarily directly
connected in the scheme of the model (Figure 2.3). In this case, the eigenvectors
therefore do not seem to provide a clearcut basis to divide the system into modules,
although parameters in the nonlinear enzyme kinetic equations for a particular com-
ponent are often found together. PCA of the parameter sensitivities of the model, an
analysis done previously on a chemical reactor system ([Gokulakrishnan et al., 2006]),
shows similar results. Interestingly, simulations with the system revealed that the PCr
shuttle contributes only one-third to the total high-energy phosphate group transfer
from the mitochondria to the sites of ATP hydrolysis to energise muscle contraction.
This seemed to contradict the ‘PCr shuttle hypothesis’, which states that almost all
high-energy phosphates in muscle cells are transferred as PCr [Bessman and Geiger,
1981]. However, our model prediction was based on a set of reference parameters on
enzyme kinetics, and our statement was not supported by an extensive analysis of
the experimental error levels that lead to imprecision in the parameters. Our aim in
section 2.9 is therefore to investigate how uncertainty in the parameter values affects
the predictions by the model.

2.9 Ensemble predictions of high-energy phosphate
group transfer

The predictions derived from simulations of the high-energy phosphate transfer model
give valuable insights into the functioning of energy metabolism in muscle cells. Nev-
ertheless, the model relies strongly on the accuracy and precision of experimentally
measured kinetic parameters for the components of the system. The parameter es-
timates are subject to experimental error and may differ between in vitro and in vivo
conditions. In the following, we describe an ensemble approach to answer the ques-
tion whether it is reasonable to state that the PCr shuttle accounts for only a small
part of the total high-energy phosphate group transfer, given the limited precision
with which model parameters are known. We chose the following ensemble method
to evaluate the uncertainty of our prediction. We generated parameter sets for the
ensemble simulation by drawing values from a Gaussian distribution with mean equal
to the parameter value from the literature [van Beek, 2007] and a relative stand-
ard deviation of 0.1. In this way, we investigated what an error of 10 per cent for
each measured parameter means for the predicted fraction of high-energy phosphate
groups carried by PCr. The membrane permeability for ADP and ATP, assumed
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Figure 2.5: Fractions of high-energy phosphate group transfer carried by PCr. The light and dark
grey shaded regions show the 95% central interval from an ensemble of size 1000 without and with
thermodynamic constraint on system parameters, respectively. The fraction calculated from the
reference parameter set [van Beek, 2007] is plotted in black. (a) Ensemble simulations over 100 s
with a step in ATP hydrolysis rate from 486 to 628 uM*s~1 at 50 s. (b) Ensemble simulations over
58ALs with ATP synthesis and hydrolysis rate of 0 uM % s—1. In this plot, the PCr fluz values are
divided by the mazimum ATP hydrolysis rate in (a), 628 uM*s~', to make the fractions comparable
between (a) and (b). Please note the differences in scale between (a) and (b). Simulations were
performed using the software package SLOPPYCELL/Gutenkunst et al., 2007a].

equal, is not randomly drawn directly, but optimised to exactly reproduce the ran-
domly drawn generalised time constant of the response to an increase in the cytosolic
ATP hydrolysis (3.7 s, s.e.=0.3 s), reflecting the variation found in the whole heart
experiment. For each parameter set of the ensemble, the system is simulated over 100
s, with an increase in the ATP turnover rate by increasing the paced heart rate from
135 to 220 b.p.m. at 50 s. The fraction of high-energy phosphate being transferred
by PCr is then calculated for each second of the resulting time series according to
Jdiff,PCr/(Jdiff,ATP + Jdiff,PC"r‘)7 with Jdiff giving the net diffusion flux of PCr and
ATP from mitochondria to cytosol. The central 95 per cent upper and lower bound
of the resulting trajectories from the ensemble calculation for the fraction of PCr
phosphate transfer is plotted in Figure 2.5.
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Strikingly, values for the calculated fraction drop below zero due to a net flux of
PCr from the cytosol into the mitochondria, meaning that high-energy phosphate is
transferred back into the IMS, which seems thermodynamically infeasible. This is
caused by our scheme to generate random parameters, where the kinetic parameters
of both CK enzymes were drawn independently. Six kinetic parameters for each en-
zyme determine the reaction’s equilibrium constant, K¢ g, via the Haldane relation.
Drawing kinetic parameters independently therefore causes differences in K¢ g in IMS
and cytosol. This may cause a reversal of Jy; s pcr (Figure 2.5a). Perpetual diffu-
sion fluxes are calculated even for cases where there is no ATP hydrolysis and with
oxidative phosphorylation being fully inhibited in the model (Figure 2.5b). Drawing
kinetic parameters independently therefore causes a situation that is thermodynam-
ically impossible. When there is no ATP hydrolysis and synthesis, all diffusion fluxes
should become zero in the steady state. To prevent diffusion fluxes in the absence of
any energy input, we add the thermodynamic constraint to the model that the Kcx
is equal in IMS and cytosol. This is implemented by drawing one Kox (with 10%
random error added) and setting it equal in IMS and cytosol for both CK isoforms.
For MM-CK and Mi-CK, five of the kinetic constants are drawn and the sixth con-
stant is calculated to yield the correct Kog. This is balanced such that all kinetic
parameters are calculated in this way an equal number of times.

The resulting uncertainty range for the prediction of the contribution of PCr to
the overall high-energy phosphate group transfer is shown as the dark grey region in
Figure 2.5. Even though the ensemble prediction covers a broad range, Figure 2.5a
suggests that PCr does not carry much more than half of the high-energy phosphate
flux from mitochondria to contractile elements, which contradicts the PCr shuttle
hypothesis posed more than 25 years ago in Science [Bessman and Geiger, 1981]. The
prediction range is narrower if thermodynamically infeasible parameter combinations
are annihilated. This example demonstrates that, for models relying on experimental
parameter measurements, each prediction should be carefully investigated with re-
spect to possible measurement errors.

2.10 Intuitive modelling for biologists: models of
metabolism with Petri nets

Petri nets were developed in 1962 by Carl Adam Petri. The Petri net formalism de-
scribes a mathematical structure to construct directed bipartite graphs for modelling
pairwise connections: a collection of two different node types is pairwise connected
by edges. The nodes are called ‘places’, representing parts of a system, and ‘trans-
itions’, representing interactions between the parts. In the common type of Petri
nets, places contain a variable integer number of tokens that reflect the state of the
place. The dynamic behaviour of the network is then described by the consumption
of tokens from one place and the generation of tokens in the connected place when a
transition fires during the execution of a Petri net (see [Murata, 1989] for a detailed
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review). Identifying the places with metabolites and the transitions with biochemical
reactions is natural and is probably more intuitive to non-mathematicians than ODE-
based models. Hence, besides modelling the LIPSSS experiments described above by
systems of ODEs, we modelled such metabolic networks also with Petri nets.

Petri nets can specify, verify and simulate a large amount of different systems
(concurrent, asynchronous, distributed, parallel, deterministic and stochastic). They
provide an intuitive way for users to deal with complex models and dynamic system
behaviour due to their graphical representation. The user can easily switch between
two points of view: (i) the transitions and the order in which they are executed and (ii)
the states of the system that are reached after a given sequence of actions. Petri nets
have been investigated for many years, leading to different Petri net types specialised
for different applications.

Here, we present a new approach to simulate tracer and LIPSSS experiments us-
ing coloured Petri nets [Jensen, 1997]. Similar to Petri nets, metabolic networks are
inherently bipartite due to the metabolic fluxes (transitions) that connect interact-
ing metabolites (places) of the network. In addition, biological reactions take place
independently or in parallel, which makes them easily representable by a concur-
rent system such as Petri nets. Furthermore, Petri nets provide random firing of
transitions to simulate natural processes that are governed by stochastic laws. Their
non-deterministic properties make them appropriate to model situations where num-
bers of molecules are low, because the randomness is expected to lead to small random
deviations if many molecules react independently.

Coloured Petri nets contain distinct groups of tokens, each represented by a dif-
ferent colour. By assigning the colours to isotopomers, they are perfectly able to deal
with the different labelling states of metabolites, i.e. isotopomers, occurring in tracer
experiments. We developed a software package that enables one to easily specify
metabolic networks at the level of carbon atoms and their connections via metabolic
reactions (CTN). The user draws molecules and transitions in a graphical user inter-
face. The CTN is then converted into a data structure representing the coloured Petri
net.

During the conversion from CTN to Petri net representation, for each metabolic
pool of the CTN, a place in the Petri net is created and the coloured tokens represent-
ing the isotopomers of the pool are determined. The user has the choice to simulate
the Petri net’s dynamic behaviour in either a continuous or a discrete (Figure 2.6a,b,
respectively) manner [Chouikha and Schnieder, 1998].

However, the constitution and the number of tokens depend on the choice of Petri
net, i.e. continuous or discrete. The continuous approach represents each isotopomer
by a single coloured token with the fraction of the particular isotopomer attached
as an attribute. In the discrete approach, however, the number of tokens for each
isotopomer is proportional to the concentration of its metabolic pool. The number of
molecules chosen to be represented by each token is the proportionality constant. Each
token represents a fixed number of molecules of the metabolite, one or more, while
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Figure 2.6: (a) Continuous and (b) discrete coloured Petri net representation of the CTN given
in 2.1. The rectangles indicate ‘places’ that represent metabolites. The places are marked with
tokens of different ‘colours’, each colour representing a different isotopomer. Please note that in the
continuous case (a), only a single token for each isotopomer fraction is present. The token has a
value attached to it to indicate the fraction. In the discrete case (b), the presence of an isotopomer is
represented by a number of equally coloured tokens. The sum of tokens of an isotopomer in relation
to all tokens present in the particular metabolite refers to the fraction of the isotopomer. The Petri
net can be simulated either continuously or discretely (see text). The transitions T1-T8 in the Petri
net represent a bundle of transitions between different isotopomers in the CTN.
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Figure 2.7: Simulation results of the metabolic network given in Figure 2.1 via Petri nets. The
diagrams show the results of a simulation using (a) a continuous Petri net, (b) a discrete Petri net
with a low number of molecules per metabolic pool (N=600 per pool) and (c) a discrete Petri net
with a higher number of molecules per metabolic pool (N=6000 per pool). In the discrete cases, each
molecule of a pool is represented by one token. Note that the simulation in (a) completely corresponds
with the integration of the ODEs (Figure 2.1), while a simulation using discrete coloured Petri nets
approaches such a continuous simulation better at a higher number of molecules. Isotopomers:
12011202, solid line; 13C112C2, long-dashed line; 12C113C2, short dashed line; 13C113C2, dot-

dashed line.

the colour of the token still refers to its isotope composition. Finally, all individual
carbon transitions present in the CTN are combined within the Petri net transitions.
Therefore, for each reaction present in the metabolic network, it is determined which
isotopomers in precursor pools give rise to each isotopomer of a particular metabolic
pool and lumped within a Petri net transition. This information is subsequently
used to perform the simulations. Both approaches offer the possibility to simulate
the system step by step, giving the user the possibility to explore system behaviour
interactively.

In the continuous case, a simulation of the Petri net closely resembles a simple
Euler integration of the corresponding ODE representation of the model. At each
time step, all Petri net transitions are fired simultaneously and the changes in the
isotopomer fractions are updated in the numeric attribute attached to the tokens
(one token per isotopomer). By contrast, during the discrete simulation, all Petri net
transitions are fired in a random order and tokens representing ‘real’ molecules are
transferred between the places. The results of a simulation of both the continuous
and the discrete Petri net in Figure 2.6 are shown in Figure 2.7.

The results show that, although the discrete Petri net simulation is a completely
different representation of the system, the overall behaviour of the system stays the
same. The knowledge gained in this way for the experimentalist is very useful to
develop metabolic models with desired properties and offers an entry point for a more
detailed analysis using model representations via ODEs.
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2.11 Future Directions

The human or animal metabolic network is extensive. Because it lies at the heart
of physiology, it would be extremely useful to have a comprehensive understanding
captured in computational models of metabolic functioning. Ideally, one would like
to have access to an n silico model of metabolism, which covers the entirety of
human metabolism without more or less arbitrary subdivisions and modularisations.
However, owing to the complexity of metabolism, such subdivisions are necessary to
study metabolism. Nevertheless, subdivisions can be quite arbitrary: a particular
modularisation may be useful for one particular task and set of experiments, but
insufficient for others. Metabolic pathways that interact little under one condition may
become strongly linked under other conditions. The alternative is not very attractive:
a large model constructed in one step is very difficult to test comprehensively. Partial
reactions in the system may be in error. Modelling in one large step makes it hard to
debug the system, while dividing the system into modules that are each tested and
debugged is desirable.

Together, the approaches in section 2.4 may be helpful to tackle the modelling and
analysis of the metabolic system, but the question is whether they are sufficient to
allow us to model either the essence or the entirety of the complete metabolic system,
despite the challenges posed by its large size and complex structure. The approaches
of multiscale, modular, ensemble modelling, etc. are closely interwoven. Must we
start by designing a grand scheme for modelling the system, providing a top-down
very structured approach for modelling human metabolism? Even a grand design will
work best if we proceed in relatively small steps. The difficulty for these steps will
be that there are always boundaries to the modules into which we divided the system
that may be hard to control.

A crucial aspect is organisation of the modelling process in such a way that, if
inevitable mistakes are made in early model versions, the interplay between computer
simulations and experimental tests results in a gradual improvement of the model.
We must aim to make the modelling process the driving force behind metabolic ex-
perimentation and data collection, such that it becomes the vehicle for integration of
knowledge and understanding of the complete metabolic system.
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3.1 Abstract

In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2)
in myocardium is investigated. The ‘phosphocreatine shuttle’ hypothesis states that
mitochondrial and cytosolic CK plays a pivotal role in transport of high-energy phos-
phate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal
buffering of changes in ATP and ADP is another potential role of CK. With a math-
ematical model, we analysed energy transport and damping of high peaks of ATP
hydrolysis during the cardiac cycle. The analysis was based on multiscale data meas-
ured at the level of isolated enzymes, isolated mitochondria and on dynamic response
times of oxidative phosphorylation measured at the whole heart level. Using ‘sloppy
modelling’ ensemble simulations, we derived confidence intervals for predictions of the
contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mito-
chondria to sites of ATP hydrolysis. Our calculations indicate that only 15+ 8 (mean
+ SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr
shuttle hypothesis. We also predicted temporal buffering capabilities of the CK iso-
forms protecting against high peaks of ATP hydrolysis (3750 uM % s~!) in myofibrils.
CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial ATP
synthesis pulsation from 215423 to 566431 pM *s~!, while amplitudes of oscillations
in cytosolic ADP concentration double from 77+ 11 to 146 £+ 1. Our findings indicate
that CK acts as a large bandwidth high-capacity temporal energy buffer maintain-
ing cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism.
However, the contribution of CK to the transport of high-energy phosphate groups ap-
pears limited. Mitochondrial CK activity lowers cytosolic inorganic phosphate levels
while cytosolic CK has the opposite effect.

3.2 Author Summary

Creatine kinase (CK) has several functions in cellular energy metabolism. It catalyses
the reversible transfer of high-energy phosphate from ATP to creatine, facilitating
storage of energy in the form of phosphocreatine. In muscle cells, this extra energy
buffer plays a pivotal role in maintaining ATP homeostasis. Another proposed func-
tion of CK is the transport of energy from ATP producing to ATP consuming sites via
a shuttle mechanism involving a mitochondrial and a myofibrillar isoform of CK. The
extent to which this phosphocreatine shuttle mechanism is used in muscle and other
tissues is hotly debated. We use a computational model of the CK system which can
predict energy transport and buffering of high demand peaks to estimate the relative
importance of both roles in heart muscle. We validate the model with multiscale
data on the level of enzyme kinetic constants and with dynamic oxygen consumption
measurements in rabbit hearts. Since model predictions can be strongly affected by
changes in parameter values, we employ ‘sloppy’ ensemble modelling which allows to
set confidence regions for predictions. Our results indicate that the main function
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of CK in heart muscle lies more in temporal energy buffering of high peaks in ATP
consumption during cardiac contraction than in energy transportation.

3.3 Introduction

It is well established that creatine kinase (CK) catalyses the reversible transfer of
phosphate from ATP to creatine (Cr):

ATP + Cr €5 ADP + PCr (3.1)

However, how this biochemical function plays a role in cell functioning has been
the subject of intense controversy [Beard and Kushmerick, 2009]. It is remarkable that
two distinct isoforms of CK are expressed in muscle cells, one in the mitochondrial
inner membrane space (IMS) and one in the cytosol where the contractile elements are
located. This led to the idea of the ‘phosphocreatine shuttle’, proposed by Bessman
and Geiger [Bessman and Geiger, 1981]: PCr formation from adenine nucleotide and
creatine in the IMS is catalysed by the mitochondrial isoform of CK, Mi-CK, located
in the IMS. PCr may then proceed to the cytosol, which constitutes a mechanism
of facilitated diffusion of high-energy phosphate (HEP) groups. Re-transfer of HEP
to adenine nucleotide to energise myofibrillar contraction is done by the muscular
isoform of CK, MM-CK, located in the cytosol (see Figure 3.1).

Transfer of HEP was argued to be accomplished either by direct diffusion of ATP
through the mitochondrial outer membrane (MOM) and cytosol or indirectly via
the ‘phosphocreatine shuttle’. The phosphocreatine shuttle hypothesis has led to
extensive scientific debates on the role of CK, e.g. [Beard and Kushmerick, 2009,
Meyer et al., 1984, Greenhaff, 2001].

Besides the energy transfer function, the creatine kinase system was thought to be
responsible for (i) temporal energy buffering by maintaining an adequate ATP/ADP
ratio during interruption of energy supply [Beard, 2006] or during changing energy
demand [Meyer et al., 1984, Vendelin et al., 2000] and (ii) for regulation of oxidative
phosphorylation [Saks et al., 1996]. The CK system, transporting creatine instead
of ADP from the cytosol to the mitochondria, is a potential key regulator of oxid-
ative phosphorylation. CK inhibition experiments on rabbit hearts [Harrison et al.,
1999, 2003] and CK knockout experiments in mice [Gustafson and Van Beek, 2002]
suggest that the creatine kinase system affects the dynamic adaptation of oxidative
phosphorylation to energy demand.

Mathematical modelling has proven helpful to understand the CK system: several
existing models account for a compartmentalised energy metabolism system in myo-
cytes under various conditions [Vendelin et al., 2000, Aliev and Saks, 1997, Saks et al.,
2000, Vendelin et al., 2004, Beard, 2005, Wu et al., 2008, Wu and Beard, 2009]. The
main differences between the model analysed here and other models described in the
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Figure 3.1: Scheme of model of the compartmentalised creatine kinase system. Main elements are
ATP hydrolysis by ATPase, ATP synthesis by mitochondria and creatine kinase (CK) isoforms in
the mitochondrial intermembrane space (Mi-CK) and cytosol (MM-CK). Ozidative phosphorylation
(OzPhos) takes place in the mitochondrial matriz and responds to ADP and inorganic phosphate
(P; ) levels in the mitochondrial intermembrane space. The concentrations of phosphocreatine (PCr),
creatine (Cr), ADP, ATP and P; are dependent on the rates of the enzyme reactions and transport.
The figure was generated with CELLDESIGNER [Funahashi et al., 2003].

literature are addressed in section 3.5. We build on a previously published compu-
tational model for the dynamic adaptation of oxidative phosphorylation to changing
workloads which captures the key elements responsible for buffering and transport of
HEP between IMS and cytosol [Kongas and van Beek, 2007, van Beek, 2007]. The
model incorporates synthesis of ATP from ADP by oxidative phosphorylation in the
mitochondria and ATP consumption in the cytosol, the reversible transfer of phos-
phate groups from ATP to creatine by CK enzyme reactions and metabolite diffusion
between IMS and cytosol through the MOM (see Figure 3.1). The model’s dynamic
behaviour is affected by 22 free parameters for enzyme kinetics and membrane per-
meability, which had been determined experimentally and were collected from the
scientific literature.

In recent work we investigated the sensitivity of the predictions of this CK model
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with respect to possible error in the parameters using a simplified ensemble approach
and found that even a modest error on each model parameter results in a broad range
of possible predictions [van Beek et al., 2009]. However, models containing many
molecular kinetic parameters, all known with little accuracy, can yield useful predic-
tions as long as the correlation of these inaccuracies is taken into account. Brown
et al. showed, using a computational model of nerve growth factor signalling, that
viable model predictions can be achieved in spite of a high degree of uncertainty in
all kinetic parameters [Brown et al., 2004, Brown and Sethna, 2003]. The approach
identifies so-called ‘sloppy’ combinations of parameters, which, when jointly altered,
do not significantly change the outcome of a model simulation, meaning that multiple
combinations of parameters describe experimental data equally well. Gutenkunst et
al. investigated a variety of metabolic and signalling networks and found these spec-
tra of correlated parameter sensitivities to be universal in Systems Biology models
[Gutenkunst et al., 2007a]. To use the information from these hidden correlations
between parameters, a Bayesian ensemble of distinct parameter sets which agree with
experimental data, can be sampled with Markov- Chain Monte Carlo (MCMC) meth-
ods. The likelihood of a parameter combination being included in the ensemble is
proportional to the parameter combination’s likelihood to predict the experimental
input data set. Starting point for the walk through parameter space is the parameter
set obtained from a least-squares parameter fit to experimental data. The resulting
ensemble of parameter sets, constrained by the experimental data, allows a quantific-
ation of uncertainty not only of parameter values, but also delineates the uncertainty
of model predictions for new experimental interventions. Below we demonstrate that
combining molecular kinetic data, organellar data and whole organ response data with
a sloppy modelling approach is feasible and fruitful.

We assembled a set of prior knowledge data on kinetic parameters of the CK
enzymes and made use of measurements on the oxidative capacity and kinetics of
isolated mitochondria and on metabolite transport across membranes and cytosol.
These data at the molecular and organellar level were combined with experimental
data on the response of the whole heart: for jumps to multiple heart rate levels the
response time of the increase in oxygen uptake in the heart was measured. Based
on model analysis of the oxygen transport system, the response time of oxygen up-
take at the level of the mitochondria could be calculated from the whole heart level
uptake [Harrison et al., 2003]. These response times for wild type CK levels and
during CK inhibition played an important role as input data for the MCMC analysis.
Based on these data from multiple levels in the system, we predict the contribution
of PCr to HEP transport and the buffering capacity of the system toward the high-
frequency high amplitude pulsations of ATP hydrolysis during the cardiac cycle. As
a consequence, we determined that the functional role of the CK system in energy
transport is limited and that high pulses in ATP hydrolysis are buffered by CK at
order 100 millisecond time scales; both functions are presently not directly accessible
to experimental measurement. Surprisingly, we also find that the mitochondrial CK
isoform plays a role in regulating the cytosolic inorganic phosphate level.



44 CHAPTER 3. FUNCTIONS OF THE CREATINE KINASE

3.4 Results

We employed experimental data from three scales: molecular kinetic parameters,
organellar capacity parameters and whole organ dynamic response data. A priori
experimental information about kinetic parameters was extracted from the literature
(see Table 3.1). For nine of the 22 model parameters, standard measurement errors
were reported. In order to constrain these parameters by their measurement errors,
we added this molecular and organellar information as terms to a least-squares cost-
function which also contained dynamic response times measured at the whole heart
level (see section 3.6). In this way experimental data from the molecular, organellar
and whole system level are treated in a unified way. For the MOM permeability
to adenine nucleotides (PSyom,4dn), @ key parameter affecting the system’s energy
transport and buffering behaviour, values in literature were contradictory [van Beek,
2007]. The parameter PSy,om, adn was therefore not constrained. The cost function
determines the probability that a parameter set is compatible with the observed data
(see section 3.6). Using Markov Chain Monte Carlo, a distribution of parameter sets
with high probability of agreement with the data is sampled. The resulting ensemble
of parameter sets is therefore a multivariate posterior distribution, shaped by the cost
function, which reflects the probability of individual parameter sets in a Bayesian
sense [Brown and Sethna, 2003].

Data on the response times of the whole system level were taken from a study by
Harrison et al., where electrically paced perfused rabbit hearts were exposed to a step
increase in heart rate [Harrison et al., 2003]. After applying the challenge, the meta-
bolic delay time t¢,,;1, was calculated from dynamic O, consumption measurements
to estimate the generalised time constant of the ATP production time course. From
a baseline level of 135 beats/min (bpm), heart rate was increased to 160, 190 and
220 bpm, respectively. Hearts were either exposed to iodoacetic acid (IAA) to block
glycolysis or to iodacetamide (IA) to inhibit both glycolysis and CK activity, yield-
ing in total 6 data points on the response time of oxidative phosphorylation, shown
in Figure 3.2. Details on model, experimental data, cost function and the ensemble
modelling approach can be found in section 3.6.

3.4.1 Parameter Estimation

Model parameters were estimated simultaneously to fit the t,,;;, values for all condi-
tions using a least-squares optimisation procedure. Different optimisation algorithms
(downhill simplex algorithm, Powell’s method, Levenberg-Marquardt) gave similar
quality of the fit. Initial and optimised parameter values can be found in Table
3.1. Figure 3.2 shows all ¢,,,;;, values predicted by the model before and after para-
meter optimisation for all conditions. After fitting, the model correctly predicts a
quicker energy supply-demand signalling when CK is inhibited by 98%, causing weaker
ADP/ATP buffering by CK. In the optimisation procedure, the maximum velocities
of the Mi-CK and the MM-CK enzyme were decreased by 12 and 36%, respectively,
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from their initial literature values. These literature enzyme activities for MM-CK
and Mi-CK had been taken from the same experimental model, but without inhib-
ition of glycolysis by TAA [Harrison et al., 1999].The experimental data used in the
present analysis was measured in the presence of IAA which was found to impede CK
activity by 20% [Harrison et al., 2003]. The drop in estimated CK activity is therefore
plausible. Other parameters which are altered significantly by the optimisation are
the apparent Michaelis constant for inorganic phosphate in the mitochondrion, K,
which drops from 800 to 347 pM, and the apparent Ky for ADP, K,q4,, which in-
creases from 25 to 36 pM. Both parameters occur in the model equation determining
the rate of oxidative phosphorylation, which may explain the inverse variation. There
exist in vitro measurements of K,; that are lower than the initial value used in this
analysis [van Beek, 2007]: Stoner & Sirak for instance measured K,; to be 360 uM
[Stoner and Sirak, 1979] which is close to our optimised value. Likewise, reported
values for K,q, vary between 20 and 30 pM [Heineman and Balaban, 1990, Jacobus
and Saks, 1982], corroborating the values obtained by the fit.

3.4.2 Monte Carlo sampling of parameter sets

Starting from the optimised parameter set (see Table 3.1), we sampled the para-
meter space to generate an ensemble of 658 independent parameter sets using the
Metropolis-Hastings algorithm. The parameter set yielding the lowest cost in the
complete ensemble was this optimised parameter set. The distributions of all para-
meters in the ensemble are shown in Figure 3.3.

The nine kinetic parameters which had known error values (see Table 3.1) show a
mean value in the ensemble close to the measured value and a standard deviation close
to their reported measurement error from the literature, which was to be expected
given the prior information in the cost function. However, the parameters for which
there was no standard error value available from the literature in general gave a
standard deviation in the ensemble which was smaller than the default assigned large
standard error (see Table 3.1). We tested the effect of different assumptions on the
default prior standard deviations on posterior parameter distributions and ensemble
predictions, reported in the supplemental material (section 3.7) which shows that the
conclusions reported here are not changed by larger or smaller values on the default
prior.

The mean value of PS,om, aan in the ensemble is 31.7 s~!, which is larger than
the optimised value of 13.3 s~! found previously [van Beek, 2007]. The distribution of
PSom,adn shows substantial skewing with a minimum value of 7.4 571, and a rather
sharp exclusion of small values which give slow response times of the system. Based on
experiments in isolated permeabilised cardiomyocytes, Sepp et al. estimated a value
for MOM permeability to adenine nucleotides of 1833 nmol/min/mg protein per mM
concentration difference [Sepp et al., 2010]. Converting this value expressed per mg
tissue protein, assuming 150 mg protein per gram wet weight, this corresponds to
PSpom,aany = 7.45+£1.89 s~ L. This is virtually the same as the minimum estimated



3.4. RESULTS 47

6
[ experimental data
[ model prediction
5 =
4 -
—~~
v
N—
S3
‘S
S
+
2
1

0
100% 2% 100% 2% 100% 2%
160 160 190 190 220 220

relative CK activity
heart rate (bpm)

Figure 3.2: Fit by the model of measured response times to heart rate steps. The response times
of ozidative phosphorylation (tmito) were measured in isolated rabbit hearts [Harrison et al., 2003].
Model parameters were estimated using a modified Levenberg-Marquardt algorithm. Dark grey bars
represent the tmito values from the experiment, light grey bars represent the tmito values predicted
by the model after the fitting procedure. Data is available for siz different conditions: three different
amplitudes of heart rate jump (from 135 bpm to 160, 90 and 220 bpm heart rate), each one measured
with full wild-type CK activity (100%) or with CK activity inhibited to 2% of wild-type value. The
error bars reflect the standard error of the measurements and the standard deviation of the tmito
values in the ensemble, respectively.

in our ensemble analysis.

3.4.3 Predicting the contribution of PCr and ATP to energy
transport

The contribution of PCr to intracellular HEP transfer, Rqif ¢ pcr, is quantified by the
ratio of PCr diffusion (Ja;ff,pcr) to the total phosphate group diffusion through the
MOM:

Jaiff,pCr
Jaifg,pcr + Jaigf,aTP

Raiff.por = (3.2)

An ensemble of simulations based on the parameter ensemble described above
allows evaluation of the confidence region for the model prediction. In the ensemble,
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Figure 8.83: Distributions of individual parameters in the ensemble generated by the Metropolis-
Hastings algorithm. Plots show histograms of all values in the ensemble for the given parameter.
The ensemble consists of 658 parameter sets. Also plotted is the probability density function of the
log-normal distribution with mean and standard deviation of each parameter scaled to the observed
frequencies.
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Rgisf por is on average 0.17£0.09 (mean 4 SD) at heart rate 160 bpm and 0.15+0.08
at 220 bpm in the case of active CK. Figure 4 shows the 95% confidence interval
between upper and lower bound of the ensemble prediction for Rg;¢f, pcr for IAA and
TA conditions in steady state at heart rate 220 bpm. The small oscillations during
CK inhibition are due to the 2% residual activity of CK. The upper bound of the
95% confidence interval remains below 0.44 during the cardiac cycle for all simulated
conditions.

Raiff,pcr decreases during the peaks in ATP hydrolysis and even becomes negative
for the lowest trajectories in the ensemble, which indicates that PCr diffuses back to
the mitochondria at the end of systole (Figure 3.4). The simulations show for these
cases that ADP diffuses into the IMS during the peaks of ATP hydrolysis, stimulating
a reversal of the mitochondrial CK reaction to produce ATP from PCr, exactly as
happens in the cytosol. For these lowest trajectories in the ensemble the CK activity
per unit volume of the intermembrane space is higher than the CK activity per unit
volume of the cytosol, causing the PCr to go down more steeply in the intermembrane
space. This causes the cytosolic PCr concentration to exceed the PCr concentration
in the IMS, and a negative gradient forces PCr to diffuse back into the IMS. However,
when averaged over the cardiac cycle, Rq;¢f,pcr is always positive, indicating net flux
of PCr from the mitochondria to the cytosol, and for the vast majority of the ensemble
PCr diffusion flux never becomes negative during the entire cardiac cycle. Simulations
suggested that the relative importance of the PCr shuttle becomes less with higher
ATP hydrolysis at heart rates of 160, 190 and 220 bpm. We tested this hypothesis
by predicting Rg4;ff,pcr for a range of heart rates from 60 to 300 bpm. The ensemble
simulations reveal that Ra;f ¢ pcr continuously drops for increasing heart rates for all
sampled parameter combinations (see Figure 3.5). The predicted decline in Rg;¢f, por
and increase in P; concentration agrees with results of a recent study on perfused rat
hearts [Vendelin et al., 2010]. Increased energy demand induces an increased ATP
gradient between both compartments. At 160 bpm, the average difference between
the ATP concentration in IMS and cytosol is 18.6 pM, at 220 bpm it becomes 22.3
uM for the optimal parameter set. The increased ATP gradient across the MOM
induces direct ATP transport instead of facilitated transport via PCr.

In order to demonstrate the dependence of shuttle utilisation on the membrane
conductance for adenine nucleotides, we predicted Rg;f, pcr as a function of PSy,om, aan
for the ensemble. The predicted range shown in Figure 3.5B indicates that only for
very small ATP permeability, PCr contribution becomes high. Even for the minimum
value for PS,,om, aan in the ensemble (7.35 s71), the entire 95% confidence inter-
val of Rg;fr pcr remains below 0.5. Low MOM permeability to adenine nucleotides
causes high-energy phosphate group transport via PCr, and that P.Sy,om, 44N is never
lower than 7.35 s~! therefore argues against a predominant phosphocreatine trans-
port. Also when the value PSy,om, adan = 7.45 571 estimated from Sepp et al. ([Sepp
et al., 2010]), see above, is incorporated as prior knowledge, the analysis still yields
similar predictions of Rg;sf,pcr, which stays with 95% confidence between 0.16 and
0.46 at heart rate 220 bpm.
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Figure 8.4: (A) Forcing function of pulsatile cytosolic ATP hydrolysis for the last two cardiac cycles
of a simulation over 60s.(B) Prediction of the relative PCr contribution to high-energy phosphate
fluz across the mitochondrial outer membrane (Rgipy pcr) at heart rate 220 bpm. The shaded
region gives the central 95% confidence interval of the Ra;¢f pcr trajectories derived from ensemble
simulations of 658 parameter sets. Solid lines depict a single simulation of the best scoring parameter
set. Dark grey shading indicates the condition with CK active. Simulations with CK inhibited by
98% by IA are plotted in light grey. Note that two cardiac cycles are plotted after a steady state was
reached.
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Figure 3.5: Dependence of PCr diffusion flur on heart rate and mitochondrial membrane per-
meability to adenine nucleotides. Prediction of the PCr contribution to high-energy phosphate flux
across the mitochondrial outer membrane (Ra;ff pcr), averaged over the cardiac cycle, as a func-
tion of (A) heart rate and (B) mitochondrial outer membrane permeability for adenine nucleotides
(PSmom,AdnN ), Tespectively. Values for (A) Steady state values for Rg;¢ 5 pcy as a function of heart
rate (B) Steady state values for Rqiff por as a function of PSpyom, adn at fized heart rate of 220
bpm. We performed simulations for the ensemble of Figure 3, with the heart rate or PSy,om,AdN
set according to the x-axis. Shaded regions depict the 95% confidence interval of the prediction,
black solid lines show the prediction for the optimised parameters (see Table 1).

It might be argued that the K, value of the mitochondrial CK should be set to 290
M with oxidative phosphorylation active ([Jacobus et al., 1982]) to reflect functional
coupling of CK to the adenine nucleotide translocator (ANT). Optimisation based on
this K, value gives as result that on average 18% of the high-energy phosphate
flux at a heart rate of 220 beats/min is transported in the form of PCr, the rest as
ATP. The parameter values for Vp,qz a, ¢ calculated from rat heart mitochondria is
1609 & 113 pM/s in [Jacobus et al., 1982] and Viyae, aTPsyn is 2960 pM /s which is
about twice the value measured in the rabbit heart study analysed here. When using
the rat heart parameters combined with K;, = 290 puM, the contribution of PCr to
high-energy phosphate transport is estimated to be 25%. Further analysis of a model
which incorporates a microcompartment which functionally couples the mitochondrial
creatine kinase to the adenine nucleotide translocator ([Vendelin et al., 2000]) shows
that it is difficult to explain the response time and molecular kinetic parameters
simultaneously with this model. The results of this analysis can be found in the
supplemental material (section 3.8). The conclusion that the contribution of PCr to
high-energy phosphate transport is relatively modest appears to be robust, because
the contribution was estimated to be 15-17% in the ensemble study with rabbit heart
parameters, see above, and does not become substantially higher in analyses with
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other parameter sets.

3.4.4 Prediction of temporal energy buffering

The results described above indicate that direct ATP transport is predominant in
working heart muscle. Given that PCr energy shuttling is of limited importance, we
investigated another potential function of CK, i.e. temporal energy buffering. When
ATP consumption by the myofibrils exceeds mitochondrial ATP production during
muscle contraction, ATP homeostasis can be maintained by PCr [Greenhaff, 2001].
Ensemble predictions for Rg;¢¢ pcyr, concentrations of cytosolic ADP and P; and ATP
synthesis rate at relative CK activity of 2, 100, and 300% of wild type levels are shown
in Figure 3.6. Note that Mi-CK and MM-CK activities are both changed by the same
factor in this set of simulations. Even at 3-fold increased CK activity, Raifr pcr
does not increase dramatically (Figure 3.6). However, oscillations of cytosolic ADP
concentrations are significantly affected by the CK activity. The amplitude of the
ADP oscillation is 77 £ 11 uM at normal CK levels and becomes 146 + 1 pM if CK
is inhibited by 98%, as is the case for IA treated perfused hearts (Figure 3.6K,J). At
threefold increased CK activity this becomes 36 £22 pM (Figure 3.6L). In simulations
of a hypothetical case with 10000-fold increase of enzyme activity, oscillations of
adenine nucleotide concentrations are almost fully damped to an amplitude of 2.6+0.2
pM (data not shown).

The time course of mitochondrial ATP production oscillates with amplitudes of
566 + 31, 215 &+ 23 and 91 + 14 uM/s for 2, 100 and 300% relative CK activity,
respectively (Figure 3.6G-I). The pulsatility of ATP and ADP concentrations and of
ATP synthesis is synchronised to ATP hydrolysis in the myofibrils. The confidence
regions for these trajectories are relatively narrow. By blocking CK by 98%, the
average concentrations of ADP in the IMS increases to 64 +9 pM from 56 £9 uM
at normal CK levels. In contrast to ADP, the amplitude of oscillations of cytosolic
inorganic phosphate stays relatively constant at different CK activities at about 145
uM . This reflects that P; is not directly buffered by CK. Surprisingly, average levels
of cytosolic inorganic phosphate drop with CK activity. The average P; concentration
at 2% CK activity is 1618 + 97 uM and becomes 1416 + 80 puM for wild-type CK
activity (Figure 3.6M,N). For all parameter sets in the ensemble the P; concentration
declines when CK activity is increased.

3.4.5 The specific role of the mitochondrial CK isoform

Transport of HEP by PCr from mitochondria to cytosol partially takes place via the
circuit formed by both CK isoforms, but was predicted to be quantitatively not very
important. On the other hand, temporal buffering of the systolic ATP hydrolysis
burst needs only the MM-CK activity in the cytosol, which is much higher than the
Mi-CK activity (see Table 3.1). It was therefore still unclear what the function of the
mitochondrial CK isoform is.
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Figure 3.6: Fluctuations of metabolite concentrations and flures during the cardiac cycle at three
levels of CK activity. Plots show (A-C) Trajectory of the forcing function of ATP hydrolysis and
ensemble predictions of (D-F) Rg;sf pcyr, (G-1) mitochondrial ATP synthesis rate, (J-L) cytosolic
ADP and (M-O) cytosolic Pi concentrations at heart rate 220 bpm. Mi-CK and MM-CK activities
were set to 2, 100, and 300% of wild-type levels. Three cardiac cycles are shown at steady state. Solid
lines show the simulated trajectory of the optimised parameter set (see Table 3.1). Shaded regions
show the 95% confidence interval for all trajectories of the ensemble of 658 parameter sets. To alter
CK activity, the parameters describing mazimum enzyme velocity, Viaz mif and Viae MM f, are
changed in parallel to the indicated percentage.
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In order to further elucidate the effect of the compartmentalised CK system on
metabolism, we performed ensemble predictions with individual inhibition of both
CK isoforms one by one. In Figure 3.7, we show the 95% confidence intervals of
predicted metabolite concentrations and reaction fluxes. The amplitude of oscillations
in mitochondrial ATP synthesis is predicted to rise from 215 4 23 puM/s at baseline
CK activity to 278 £ 33 with 98% Mi-CK inhibition, compared to 375+ 21 M when
MM-CK is inhibited by 98% (Figure 3.7I-K). Thus, despite its low activity, Mi-CK
still has a small but clear effect on the ATP synthesis oscillation amplitude. Inhibition
of Mi-CK has a larger effect when MM-CK is already inhibited (amplitude 565 + 31
uM/s, Figure 3.7L). The damping of ADP oscillation is highly affected by MM-CK
but not by Mi-CK: 98% inhibition of Mi-CK leads to an increase in the amplitude
of systolic ADP oscillation from 77 + 11 to 83 + 11 uM (Figure 3.7M,N), whereas
MM-CK inhibition doubles the amplitude to 146 + 1 uM (Figure 3.70).

Predictions of Rg;f¢, pcyr illustrate that both Mi-CK and MM-CK are required for
a functioning phosphocreatine shuttle. PCr diffusion averaged over the cardiac cycle
makes a very small contribution to total HEP delivered from the mitochondria when
either Mi-CK or MM-CK is inhibited by 98%. With 98% inhibited Mi-CK activity,
Raif s, por is even slightly below zero during diastole with low ATP hydrolysis, meaning
that PCr is transported from cytosol to IMS (Figure 3.7F). Note that this situation
is reversed with respect to normal Mi-CK and MM-CK activity where PCr diffusion
is always positive during diastole and occasionally becomes negative during ATP
hydrolysis peaks. For normal CK activity the explanation for reversed PCr diffusion
during ATP hydrolysis (Figure 3.7E) was that the CK activity per unit volume is
higher in the IMS than in the cytosol. During Mi-CK inhibition this is of course no
longer the case and systolic PCr consumption in the cytosol leads to PCr diffusion
from the IMS, explaining the reversal of PCr transport during systole. In contrast,
with MM-CK inhibited, ATP is buffered by Mi-CK in the IMS and PCr diffuses to the
IMS at the end of the ATP hydrolysis peaks. This explains why Rg;ifr,pcr goes more
negative during ATP hydrolysis peaks with MM-CK inhibition and its oscillation
is stronger than for normal Mi-CK and MM-CK activity (Figure 3.7E, G). When
inhibiting Mi-CK activity, our model predicts an increase in the amplitude of [ADP]
oscillation in the IMS from 57+8 to 71£8 puM. Mi-CK therefore has a damping effect
on oscillations of ADP concentrations in the IMS, which contributes to the damping
of mitochondrial ATP synthesis.

The concentration of cytosolic P; is predicted to be lowered by mitochondrial
creatine kinase activity. Blocking Mi-CK leads to a P; increase by about 18% from
1416480 to 1670+£167 uM (Figure 3.7Q, R). If Mi-CK is inhibited by 100%, the steady
state P; concentration becomes 1678 £173 uM (data not shown). MM-CK inhibition
decreases the P; concentration; a combination of Mi-CK and MM-CK inhibition leads
to a slightly higher P; level compared to the wild-type (Figure 3.7S, T).
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Figure 3.7: Ensemble predictions of metabolite concentration and flux oscillations during the cardiac
cycle for selective CK isoform inhibition. In the first row (panels A-D), the pulsatile forcing function
for ATP hydrolysis is plotted. Predictions of the time courses of (E-H) relative contribution of PCr
to high-energy phosphate transport, Ry;sf pcr, (I-L) ATP synthesis rate, (M-P) cytosolic ADP and
(Q-T) P; concentrations. Heart rate is 220 bpm. In the four columns we compare: no CK inhibition,
98% Mi-CK inhibition, 98% MM-CK, or both CK enzyme reactions inhibited by 98%. Black solid
lines show the simulated trajectory of the optimised parameter set (Table 3.1). Shaded regions show
the 95% central confidence interval for all trajectories of the ensemble of 658 parameter sets. To
alter CK activity, the parameters describing mazimum enzyme velocity, Vipaz,mif and Vipaz MM f»

are changed to the indicated percentage.

Three cardiac cycles are shown after a steady state was

reached. Note that the first and the last column also appear in Figure 8.6 and are shown here for
ease of comparison.
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3.5 Discussion

The relative importance of the different roles of the CK system in myocytes is still
hotly debated [Greenhaff, 2001]. The present study was designed to investigate the
function of CK in cardiomyocytes under varying workloads. In particular we sought to
elucidate whether the phosphocreatine shuttle is the major pathway for HEP transfer
from mitochondria to energy consuming myofibrils as stated in the phosphocreatine
shuttle hypothesis or whether CK has other metabolic functions, e.g. the damping of
swings in ATP and ADP concentrations and oxidative phosphorylation.

Various computational studies of cardiac energy metabolism have been published
based on models which contained the creatine kinase reaction, ATP hydrolysis and
synthesis. The model analysed in the present study is a subset of the model of Vendelin
et al. ([Vendelin et al., 2000]) and was described previously [Kongas and van Beek,
2007, van Beek, 2007]. The diffusion gradients in the cytosol which had been shown
to be very small ([Vendelin et al., 2000]) were replaced by a simple diffusion conduct-
ance. The adenine nucleotide translocator and phosphate carrier in the mitochondrial
inner membrane and oxidative phosphorylation (OxPhos) reactions in the mitochon-
dria in the model of Vendelin et al. were replaced by a Michaelis-Menten equation
describing OxPhos flux as a function of ADP and P; in the intermembrane space [van
Beek, 2007]. The model was further modified in order to prevent thermodynamically
infeasible loops by introducing constraints on the equilibrium of the CK reactions in
IMS and cytosol [van Beek et al., 2009]. Some models in the literature implement
substrate channelling between ANT and Mi-CK by a microcompartment which is
located inside the intermembrane space [Vendelin et al., 2000, Aliev and Saks, 1997,
Vendelin et al., 2004]. The performance of those models is discussed below. Other
models exist for myocardial energy metabolism which do not consider the role of two
creatine kinase isoforms connected via facilitated diffusion. For instance, Beard et al.
integrated a detailed model of oxidative phosphorylation [Beard, 2005] with a model
of spatially distributed oxygen transport and HEP metabolism to investigate the reg-
ulation of oxidative phosphorylation at different cardiac workloads [Beard, 2006] and
HEP buffering in hearts at high workloads, acute ischemia and reactive hyperemic
recovery.

In the present study we predicted the functions of the CK enzyme isoforms based
on the following strategy. A set of experimental data from multiple scales was as-
sembled. We based the analysis on our model which had been shown to contain the
key elements of the CK system [Kongas and van Beek, 2007, van Beek, 2007]. The
experimental data set allowed to estimate all parameters of this model. In order to set
confidence regions for the predictions of CK function, the experimental errors for the
data were taken explicitly into account. This was possible by generating an ensemble
of model parameter sets. The probability of a set of parameters being part of the
ensemble was determined based on the probability of the predicted experimental data
set given the parameters. This approach was termed sloppy modelling [Brown and
Sethna, 2003]. Brown et al. [Brown et al., 2004] and Gutenkunst et al. [Gutenkunst
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et al., 2007b] applied it to time series of protein activity levels measured during dy-
namic responses of a system as a whole. The surprising finding in their studies was
that responses of the system as a whole were predictable with acceptable confidence
regions even if all parameters of the model were known with very poor accuracy. This
is possible because the correlation between parameters is well defined by the behaviour
of the system as a whole. A novel aspect in the present study is that we combined
data taken from different integration levels in the system: kinetic parameters determ-
ined on enzymes in isolation, enzyme activity levels measured in tissue homogenates,
organellar capacity levels measured on isolated mitochondria and dynamic response
times determined on the heart as a whole. The whole organ response times were very
important because they sensitively depend on the permeability of adenine nucleotides
through the outer mitochondrial membrane, one of the organellar level parameters.
This MOM permeability could not be determined experimentally with any degree of
accuracy in isolated mitochondria. Combining some strategically important data from
the whole system level with molecular parameters appears sufficient to predict system
properties with acceptable confidence regions (Figures 3.4 - 3.7). Many of the exper-
iments that are invoked to support high degrees of functional coupling between CK
and ANT have been done in isolated mitochondria or in isolated myocytes and muscle
fibres that were permeabilised. These were often studied at temperatures substan-
tially below the physiological level. An important aspect of our analysis is that we try
to estimate the functional roles of CK in the intact heart. To that end we combine the
kinetic data from the molecular level with data obtained in isolated perfused hearts. It
is important to realize that these hearts were intact, with contractility and cell mem-
branes fully functional. Our model analysis explains the experimental data without
invoking direct coupling of CK and ANT. However, the limited permeability of the
mitochondrial outer membrane to adenine nucleotides, estimated from the response
time in the intact heart, results in a certain degree of dynamic compartmentation of
the adenine nucleotides. This approach helps to define the functional roles of CK in
the intact heart at physiological temperatures. If CK-ANT direct coupling is the only
way that ADP is delivered to the ANT, then the experiments with 98% inhibition of
CK cannot be explained. It would then also be hard to explain that Mi-CK knockout
animals still have substantial cardiac contractile function [Saupe et al., 1998]. Future
CK-ANT interaction models need to address such experimental data sets with CK
inhibition and also explain the phosphate-labelling data of Erickson-Viitanen et al.
[Erickson-Viitanen et al., 1982].

Our findings suggest that the principal role of the CK system in heart muscle is to
serve as a temporal energy buffer for ATP and ADP at the 100 millisecond time scale.
CK’s role in supporting transport of high energy phosphate groups seems of limited
importance. If oxygen supply is interrupted, PCr will also buffer ATP and ADP for
several seconds [Beard, 2006]. Temporal energy buffering therefore has a relatively
large bandwidth. Joubert et al. experimentally investigated the role of the CK shuttle
by 3! P NMR magnetisation transfer protocols in vivo and proposed the hypothesis of
a versatile role of PCr on intracellular energy transport depending on cardiac activity
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[Joubert et al., 2004, 2002]. Partial inhibition of ATP synthesis led to a decrease of
indirect energy transport via PCr. This decrease is predicted by our model (data not
shown). Some computational models on compartmentalised energy transfer in muscle,
as for instance in Vendelin et al. ([Vendelin et al., 2004]), assume restricted diffusion of
adenosine nucleotides to an extent where energy transport via PCr becomes essential.
However, a large restriction of adenine nucleotide permeation of the cytosol and MOM
is not compatible with the relatively fast responses of oxidative phosphorylation to
cytosolic workload steps [van Beek, 2007].

The conductance parameter P.Sy,om, aqn in our model reflects not only the per-
meation of the MOM proper but in series with that also diffusion in myofibrils and
cytosol. The inverse of P.Sy,om, 44n in our model is therefore the sum of the inverse of
permeability-surface products (PS) for the MOM proper and cytosol, respectively [van
Beek, 2007]. The present Monte-Carlo ensemble approach indicates that PSp,om, aan
lies within a range from 7.4 to 115 s~! (see section 3.3). Based on the transverse
diffusion coefficient of 52 um? for ATP in the myofibrillar space measured with fluor-
escently labelled ATP [Vendelin and Birkedal, 2008], the PS calculated for the cytosol
is 216.7 s~! [18]. Given an ensemble mean PS,om, aan of 31.7 s7! (see 3.1) we
predict that about 15% of the total resistance to diffusion can be attributed to the
cytosol. Note that the fluorescently labelled ATP has a higher molecular mass than
ATP. The true diffusion coefficient of ATP is probably higher and the contribution
of the cytosolic space to diffusional resistance is therefore probably overestimated in
this calculation. The contribution of PCr to HEP transport predicted in the present
study (section 3.4) is compatible with measured response times of the system (sec-
tion 3.2). It has been suggested that in cardiomyocytes the density of mitochondria
and their vicinity to myofibrils is sufficient to ensure energy transport via adenosine
nucleotides [Meyer et al., 1984]. The prediction by our model that CK-facilitated
transport of PCr is not obligatory for HEP transport is in line with the observation
that CK knockout has relatively mild effects on cardiac function [Gustafson and Van
Beek, 2002, Saupe et al., 1998, Veksler et al., 1995].

Activation of oxidative phosphorylation has been proposed to be strongly depend-
ent on substrate channelling of ATP and ADP between the tightly coupled enzymes
Mi-CK and ANT, meaning that ATP exported from the mitochondrial matrix via
ANT is immediately available as a substrate for Mi-CK. The resulting ADP is then
channelled back to stimulate oxidative phosphorylation in the mitochondrial matrix.
However, the hypothesis of functional coupling is still debated [Beard and Kushmer-
ick, 2009] and other studies seem to contradict it [Lipskaya and Savchenko, 2003]. In
order to investigate the effect of functional coupling between the ANT and Mi-CK we
implemented and analysed the model of Vendelin et al. ([Vendelin et al., 2000]), where
the reactions are coupled by a microcompartment (section 3.8). The model, which
contains constants which phenomenologically reflect the functional coupling of Mi-CK
to the ANT is considered to give a good and computationally effective representation
of the functional coupling between Mi-CK and oxidative phosphorylation [Vendelin
et al., 2004]. It appeared to be rather difficult to fit the model of Vendelin et al. to the
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given experimental data of mitochondrial delay times (t:mit0) when measurements on
molecular kinetic parameters are taken into account in the cost function. Especially
at low workloads, a quicker response to a step in ATP consumption rate after CK
inhibition could not be predicted with this model. Even when all parameters from
the model of Vendelin et al. were variable during the optimisation procedure, the
quality of the fit is far from optimal despite the fact that the model of Vendelin et
al. has about three times as many parameters as our present model. We therefore do
not consider the microcompartment explicitly in our present study.

The present results suggest that most of the delay of the activation of oxidative
phosphorylation after temporal changes in ATP hydrolysis is caused by the delay of
changes in phosphate metabolite levels outside the inner mitochondrial membrane. To
investigate whether processes inside the mitochondria delay the response further, we
tested a model of the mitochondrial matrix including metabolite transport across the
inner mitochondrial membrane with instantaneous step changes in ADP or Pi and also
with ADP and Pi simultaneously outside the inner mitochondrial membrane. This
corresponds to the model applied in section 3.8 with all processes outside the inner
mitochondrial membrane removed and the ADP and Pi concentrations outside the
inner mitochondrial membrane set as forcing function. After a 20% increase in ADP
concentration, ATP synthesis in the mitochondria reached a steady higher level within
one second. The response time, calculated as for t,,;;,, was 0.4 s. For a step in P; the
response was even faster with a negative value for the response time of 20.3 s because
the response showed an overshoot. For a simultaneous change in ADP and Pi the
mitochondrial response was essentially complete within half a second, with a response
time of 0.08 s. When extra-mitochondrial ADP is changing, both mitochondrial oxy-
gen consumption and ATP efflux via the ANT reacted even faster than the ATP
synthase reaction. The fast response of mitochondrial metabolism predicted by the
model is in agreement with spectroscopic measurements of the oxidation state of the
electron carrier cytochrome b which was oxidised with a half-time of 70 milliseconds
after a step in extra-mitochondrial ADP concentration at 26 °C, and presumably
much faster at the physiological temperature [Chance, 1965].

In studies on isolated rabbit cardiac muscle mitochondria the direct contribution of
mitochondrial ATP to PCr formation by Mi- CK is low [Erickson-Viitanen et al., 1982].
It was shown with radioactively labelled phosphate groups that if the concentration
of ATP in the environment of the mitochondria is larger than 0.2 mM, less than 6%
of PCr synthesis uses ATP synthesised immediately beforehand in the mitochondrial
matrix. This is incompatible with a model where a major part of PCr is synthesised
from ATP directly transferred to creatine kinase via a very small compartment with
limited exchange with its environment.

By in silico analysis, we inferred distinct roles for the mitochondrial and myofibril-
lar creatine kinase enzymes. MM-CK is mainly responsible for damping large swings in
metabolite concentrations and large oscillations in the rate of oxidative phosphoryla-
tion which would otherwise be caused by the large peaks of ATP hydrolysis during
the cardiac cycle. Mi-CK restricts high concentrations of inorganic phosphate, which
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is surprising considering that inorganic phosphate is not handled directly by CK. Des-
pite its low activity, Mi-CK also decreases oscillations of ATP synthesis, mainly due
to the effect of Mi-CK on ADP oscillations in the intermembrane space.

The effect of the CK isoforms on the buffering of ADP oscillations and the preven-
tion of high concentrations of inorganic phosphate may play a role in the prevention
of formation of reactive oxygen species (ROS). ROS production highly depends on
the mitochondrial membrane potential, which is increased at low ADP levels [Meyer
et al., 2006, Korshunov et al., 1997]. The electric membrane potential in mitochondria
can also be altered by inorganic phosphate, leading to enhanced ROS release [Oliveira
and Kowaltowski, 2004]. Low ADP concentrations during diastole are prevented by
MM-CK according to our predictions (see section 3.7). A protective role of Mi-CK
against oxygen radical formation by preventing high inorganic phosphate concentra-
tions is also predicted by our model. A function of Mi-CK to prevent oxygen radical
formation has been found experimentally in isolated brain mitochondria [Meyer et al.,
2006]. The energy buffering role of the CK system has been linked to the prevention
of oxidative stress in neurons [Klivenyi et al., 1999, Brewer and Wallimann, 2000].
Creatine supplements to nutrition have also been shown to have a neuroprotective
effect in models of Huntington’s disease [Hersch et al., 2006, Matthews et al., 1998].
The effects of creatine as a nutritional supplement in health and disease have recently
been reviewed by Wallimann et al. [Wallimann et al., 2011].

In conclusion, we showed that by using a relatively small ’skeleton’ model we were
able to explain the dynamic adaptation of cardiac energy metabolism to changing
workloads and to discern different functions of distinct CK isoenzymes. The sloppy
modelling approach enables to make useful predictions of CK system behaviour despite
limited experimental input data and limited knowledge of kinetic parameters. The
concept of sloppy modelling can also be used to find optimal experimental designs to
further test the model [Casey et al., 2007]. We also demonstrated that combining a
computational model analysis with experimental data on the level of cellular organ-
elles and isolated enzymes and with the response of the heart as a whole provides a
powerful combination that gives valuable insights in the functional roles of CK, such as
regulation of oxidative phosphorylation, energy transport, inorganic phosphate levels
and buffering of peaks of ATP hydrolysis at the 100 millisecond time scale.

3.6 Methods

3.6.1 Computational model

For our analysis, we employed a previously published computational model [van Beek,
2007]. It is available in various formats and can be found in the BioModels database
[Le Novere et al., 2006] as well as in the CellML model repository [Lloyd et al., 2008].
The model incorporates the key elements of the CK system with ATP synthesis in the
mitochondria and pulsatile ATP hydrolysis in the cytosol (see section 3.1). The input
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of the model is a forcing function of cytosolic ATP usage catalysed by myosin-ATPase
and ion pumps. The model contains ten ordinary differential equations (ODEs) de-
scribing the rate of change of each metabolite concentration (ADP, ATP, PCr, Cr,
P;) in two compartments over time. These equations were extensively described pre-
viously [van Beek, 2007]. Model dynamics depend on 22 kinetic parameters retrieved
from the literature which are listed in section 3.1. In general the kinetic constants
retrieved from the literature have relatively modest standard errors. However, for the
permeability of the MOM to ATP and ADP (assumed to be equal in the model ana-
lysis; cf. [Vendelin et al., 2000]), reported values differed from 0.16 [Vendelin et al.,
2000] to 85 pm * s~! in the model of Beard [Beard, 2005] based on measurements
of Lee et al. [Lee et al., 1994]. This large variation is possibly due to mitochondrial
isolation or cell membrane permeabilisation procedures.

The mitochondrial outer membrane permeability-surface product parameter
PSpom,adn influences the response time for dynamic adaptation of oxidative phos-
phorylation strongly. Therefore the dynamic measurements of venous oxygen outflow
in the heart as a whole in response to an increase of heart rate allow estimating the
mitochondrial membrane permeability at the organellar level. The whole heart meas-
urements were corrected for oxygen transport delay to reflect events at the level of
the mitochondria (see below). The mitochondrial response time ¢,,;, is defined as
the generalised time constant of the time-course of oxygen consumption (defined to
be equivalent to the first central statistical moment of the impulse response function
in case the system is linear), previously described in [van Beek, 2007, van Beek and
Westerhof, 1990, van Beek et al., 1998, Van Beek and Westerhof, 1991]. From a model
simulation, tmito is calculated as follows:

fend i — Jarpsyn(t
tmito:/ AT Phyd,test ATPsyn() dt (33)

JATPhydtest — JAT Phyd, basis

tstep

Where Jarphyd,basis a0d JATPhyd,test are the values for the ATP hydrolysis rates
for the two electrically paced heart rates at baseline and test level, averaged over the
cardiac cycle; Jarpsyn denotes the time course of ATP synthesis in the mitochondrion.
tstep is the time point when the heart rate is increased and t.,q is the time point of the
final oxygen measurement. Note that the average Jarpsyn in the steady state before
and at the end of a test challenge equals Jarphyd,basis a0d JAT Phyd,test, Tespectively.

In order to correspond with the experimental conditions in [Harrison et al., 2003],
tena Was set to 60 seconds with ts., = 0 seconds; an initial run for 40 seconds before
the heart rate step ensures that ATP synthesis has adapted to ATP hydrolysis and
is found to be in steady state at this stage. In order to investigate the damping cap-
abilities of the modelled system, ATP hydrolysis is simulated as a pulsatile function
representing the alternating nature of energy demand in systole and diastole as de-
scribed in [van Beek, 2007]. Figure 3.8 shows the dynamic response of mitochondrial
ATP production in response to a step in heart rate and ATP hydrolysis.
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Figure 3.8: Pulsatile nature of energy production and consumption in the beating heart and the
response to a step in heart rate. Shown are the time courses of (A) ATP hydrolysis and (B) synthesis
stmulated with the model of Figure 1. At time 0 s, average ATP hydrolysis rate was increased from
486.5 to 627.6 uM * s~ 1 corresponding to an increase in heart rate from 135 to 220 bpm, as was
imposed in the experiments which were simulated in this study. Please note the difference in scale
of the y-axis between panels A and B.

3.6.2 Sloppy ensemble modelling

Almost all models in systems biology contain parameters that cannot be determined
precisely. It is common practice to estimate missing parameter values by a para-
meter fit to experimental data. After the fit, one can make model predictions and
analyse the underlying biological processes. This, however, is dangerous because a
range of parameter combinations may agree with the available data equally well,
potentially leading to deviating model predictions of new experimental situations.
Directions in parameter space where parameter changes do change the simulation
outcome very little were termed ‘sloppy’ by Brown et al., whereas directions where
small changes in parameter values affect the dynamic behaviour of the system strongly
were termed ‘stiff” [Brown and Sethna, 2003]. Sloppy parameter sensitivity spectra
have been identified for numerous biological models by the analysis of the eigenvectors
and eigenvalues of a sensitivity matrix calculated from the chi-square cost function
[Gutenkunst et al., 2007a]. Sloppy models exhibit a characteristic pattern with the
logarithms of eigenvalues approximately uniformly distributed over a large range. A
sensitivity analysis of the CK model revealed the presence of both stiff and sloppy
parameter combinations and a ‘sloppy’ sensitivity spectrum [van Beek et al., 2008].
Since our model shows sloppy parameter sensitivities and is based on data subject
to experimental variation, drawing predictions from an ensemble of parameter sets is
preferable to merely relying on one parameter set fit to experimental data. Accord-
ing to the sloppy modelling paradigm ([Brown and Sethna, 2003, Gutenkunst et al.,
2007al), the probability of a set of model parameters 6 to be included in the ensemble
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is proportional to its likelihood to describe given experiment data D multiplied by the
likelihood of prior experimental information about the parameter values themselves.
The sampling process is thus based on Bayesian inference of a posterior distribution
of parameter sets P(0|D) = P(D|0)* P(0), where P(D|0) is the likelihood of the data
given a parameter set, P(6) is the prior probability of the parameter set based on
experimental prior knowledge on single parameter values and the posterior P(]|D) is
the probability of a parameter set to describe the given experimental data. The con-
struction of the ensemble with a Markov-Chain Monte Carlo (MCMC) method was
done with the Metropolis-Hastings algorithm [Gutenkunst et al., 2007b]. The Sloppy
cell software environment, used for the analysis, was adapted to process all operators
which were in the SBML file describing the model. The modified version is provided
online'. To speed up convergence, Sloppy Cell takes larger steps along sloppy dir-
ections and smaller steps along stiff directions in parameter space; this ‘importance
sampling’ is described in [Brown et al., 2004, Brown and Sethna, 2003].

3.6.3 Experimental data

Measured values of molecular model parameters and their provenance, extracted from
the scientific literature, are listed in table 3.1. For nine of the 22 parameters reliable
standard measurement errors could be found. In addition to the direct measurements
on molecular parameters, we employ t,,i;, values from a study by Harrison et al.
where the effects of inhibiting creatine kinase and different sizes of electrically paced
heart rate jumps in rabbit hearts were investigated [Harrison et al., 2003]. Isolated
hearts were perfused with Tyrode’s solution containing among others glucose and
pyruvate to provide substrates for energy metabolism. In our dataset we include two
experimental conditions where hearts were exposed to either (i) iodoacetic acid (IAA)
to block glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or (ii) iodacetamide
(IA) to inhibit both CK and GAPDH. In order to provide a sufficient amount of
reducing equivalents to fuel aerobic respiration despite the inhibition of glycolysis,
the buffer also contained pyruvate.

Adenosine was added to the Tyrode buffer to ensure that oxygen supply is non-
limiting when oxygen consumption is recorded. The whole heart measurements were
corrected for the O, transport time in the coronary vessels based on a model of oxy-
gen transport by convection in blood vessels and diffusion through tissue. The ¢,,:t0
therefore reflects the response time at the level of the mitochondria (cf. [Harrison
et al., 2003] and references cited there).The mean response time was also corrected
for a small deviation from an ideal step in beat-to-beat ATP hydrolysis measured as
an initial overshoot in rate-pressure product [van Beek and Westerhof, 1990]. For
each condition, steps in heart rate were imposed from 135 to 160, 190 and 220 beats
per minute, respectively, using electrical pacing. Note that glycolysis is always in-
active when the dynamic response is measured, which corresponds to the absence of
glycolysis in the computational model. This approach made it possible to isolate the

Ihttp://www.ploscompbiol.org/article/info\%3Adoi\%2F10.1371\%2Fjournal.pcbi.1002130
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contribution of the CK system from the contribution of glycolysis, which removes
substantial complexity from the model analysis.

A step in ATP hydrolysis from 486.5 to 627.6 umolxl~! cell water s~ ! corresponds
to a step in the electrically paced heart rate from 135 to 220 bpm, as was estimated
from measurements of myocardial oxygen consumption [van Beek, 2007]. From these
values, we linearly interpolated hydrolysis rates of 531.4 and 579.5 pumol*l~" cell water
x5~ 1 for heart rates 160 and 190 bpm, respectively. To simulate CK inhibition by IA
the model parameters for the maximum velocities of both enzyme reactions were set
to 2.3% of their original values, corresponding to the CK activity measured for the
inhibited hearts. Note that the enzyme activities, the mitochondrial capacities and
the whole organ dynamic response times were all measured in the same experimental
model by the same laboratory.

3.6.4 Cost function

Model parameters are fitted to experimental data using a modified Levenberg-Marquardt
least-squares procedure in logarithmic parameter space, which is part of the Sloppy-
Cell modelling environment. For our model and data we calculate the cost C for a
given parameter set 6 as follows:

c(9) = %Z%{i_dc + Zprior(@i) (3.4)

with y. being the model prediction of tmito (Equation 3.3) as a function of the
parameter value 6 and d. the measured value for condition ¢ with standard error o4, .
The first term of the cost function takes into account the experimental data on the
whole heart level, whereas the second term represents prior experimental information
about parameter values found in the literature or measured in conjunction with the
modelled experiments. The prior cost, which gives a penalty for a parameter 6; for
drifting to far from its measured value 6;%, is calculated as in [Gutenkunst et al.,
2007a):

1 (Inf; — Inb;
prior(0;) = 3 <no_l€n*> (3.5)

Note how the prior is used to enter experimentally measured information on para-
meters measured at the molecular level in the second term of Equation 3.4, while
the first term contributes measured information on the whole system response. The
deviations of the predicted response times from their measured values are penalised
relative to their measured standard errors and the deviation of the molecular para-
meters from measured values are penalised relative to their reported standard errors.
Values for molecular parameters reported in the literature are usually given as mean
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and standard error. However, in the sloppy modelling framework, it is preferable to
choose a normal distribution in log space

[Brown et al., 2004, Gutenkunst et al., 2007b,a]. A Gaussian distribution of log-
arithmic parameters has been proposed to be biologically plausible [Schaber et al.,
2009]. This forms a convenient way to deal with dimensionless positive quantities as
parameter values [Liebermeister and Klipp, 2005].

In order to calculate the o;,¢ value for a parameter 6 in log space from its reported
standard error (considering the span of a 95% confidence region), we set the value as
follows:

1 0; + 25E

where SE is the absolute standard error of parameter ;. If the standard error
is small relative to the mean of the parameter, the shapes of the prior distributions
become approximately normal (see Figure 3.3). Since standard errors for only nine
of all 22 system parameters could be found, we chose the default 0,9 value for the
remaining parameters to be at the maximum of all oy, values for parameters with
known error. This maximum was the error of the parameter for the binary dissociation
constant for creatine from Mi-CK (K;p ari, and see Table 3.1). In order to investigate
the effect of altered default prior standard deviation on posterior parameter distribu-
tions and ensemble predictions, we performed several additional ensemble simulations
with lower and higher default values. Results of these simulations can be found in
section 3.7. The parameter describing MOM conductance for adenine nucleotides,
PSmom,adn, could not be reliably determined by experiments on the organellar level
and was therefore not constrained by a prior.

3.6.5 Determining prediction uncertainty: Ensemble simula-
tions

A first estimate of parameter values was determined by a least-squares fit to the data,
using the cost function of equation 3.4. This initial best parameter estimate resulting
from the optimisation is used as the starting point for a walk through the parameter
space using the Metropolis-Hastings algorithm. Starting the random walk from the
optimised set of parameters made the algorithm converge more quickly to the pos-
terior distribution. We use the algorithm’s implementation in SloppyCell to sample
parameter sets with probability density proportional to exp(—C(8)). All scripts to
reproduce the presented calculations can be found online? To ensure that the mem-
bers of the ensemble are statistically independent, we ‘prune’ the ensemble by taking
only every n'* sample, where n is the maximum correlation time of all parameters.

?http://www.ploscompbiol.org/article/info\%3Adoi\%2F10.1371\%2F journal.pcbi.1002130
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The correlation time of a parameter is defined as the time constant of its autocorrel-
ation function. For our model, taking 50000 steps in the random walk is sufficient to
obtain more than 600 independent parameter sets. The independent parameter sets
in the ensemble provide the final estimate of the parameters, not only characterised
by a mean but also by a standard deviation which reflects the spread of the estim-
ation. Calculations were executed in parallel on a ClusterVision parallel machine
with 16 nodes of four 3GHz processors with 4GB RAM. For computational perform-
ance reasons, we calculated model simulations for parameter estimation and ensemble
sampling with an ATP hydrolysis rate averaged over the cardiac cycle rather than the
pulsatile pattern shown in Figure 3.8. This reduced the time needed for calculations
tremendously, making it feasible to do the ensemble calculations in several hours.

However, to investigate the damping characteristics of the system, we use a pulsat-
ile forcing function of ATP hydrolysis (see Figure 3.8A) [van Beek, 2007]. To assess
the differences in metabolite levels and fluxes caused by replacing the pulsatile func-
tion with a time-averaged continuous function, 1000 parameter sets were randomly
drawn from all parameter sets tried in the Monte-Carlo random walk, to compare
the values of model results between pulsatile and non-pulsatile simulations. The vari-
ables most affected by the pulsatile approximation are Rg;f¢ pcr and tpi,. The
difference between pulsatile vs. non-pulsatile simulations of all 1000 parameter sets
is 7.6+£4.3 and 6.8£1.5% (mean+SD), respectively. tmito values from non-pulsatile
simulations are always slightly smaller than values from a pulsatile simulation, but
their deviation is smaller than the standard error of the experimental tmito data.
The difference between pulsatile and non-pulsatile model results for other variables is
below 4.5% of their average values in a non-pulsatile setting.

3.7 Supplemental text 1: Ensemble predictions with
different default prior standard deviations

3.7.1 Ensemble Simulations

For 13 of the 22 model parameters, no reliable standard measurement error could be
found in the literature. For those parameters, we assumed the default prior standard
deviation corresponding to the highest available measurement error (0,9 = 0.336;
reflecting the reported error of Ky, as; which is about 30% [Jacobus et al., 1982]. In
order to test how a different default prior affects posterior parameter distributions
and predictions, we performed three additional ensemble predictions with a gy,¢ for
parameters with unknown errors of (i) 0.107, which is calculated from the mean of all
oing for reliably known measurement errors, (ii) 0.637 and (iii) 1.009, which is double
and triple the oy,9 for Kib,Mi, respectively. Table 3.2 shows mean parameter values
and the prior and posterior standard deviations for all three ensembles. In general,
posterior standard deviations increase with a higher prior o,¢. For most parameters,
the standard deviation of its posterior distribution in the ensemble (in log-space) is
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Ensemble mean + SD

Ensemble mean + SD

Ensemble mean + SD

Parameter default oy, (9)=0.107  default 0,5 =0.673  default o, =1.009
Keq.CK 152.274+3.91 152.474+3.9 152.224+4.13
“Vivewarig  886.61+£97.52 762.754303.77 668.78+524.62
Kinati 749.62461.07 751.8463.69 744.454+60.57
Kip i 30032.9410318.4 30056.72-49295.1 31737.3411647.7
Ko ari 206.48422.91 254.964172.29 277.93+368.08
Kid,Mi 1604.34+213.01 1571.74+194.88 1619.824214.37
Ky as 5203.24286.04 5213.49+296.48 5209.05-+308.39
Kd,]bh 502.394+19.91 501.014+19.61 498.87+19.25
“Viawniar,s  11391.1£1200.4 8937.5145186.11 10207.34+9436.2
*Kia, M 900.34--97.96 1353.01+1030.03 1559.29+1574.26
Ky arat 35045.943818.3 44952.01434756.14 54320.8£69811.6
Kot 224.17424.6 256.44+185.15 348.16+467.35
*Kia i 4786.54+481.17 5587.71+4428.64 6338.79-£7203.39
Kot 15868.9+2673.5 16076.45+2828.23 15980.3442744.0
Ko v 1667.44+38.2 1673.59+37.56 1679.14441.17
Vina oym 1303.72+55.71 1399.88+132.62 1456.754+151.98
*Kody 25.842.96 35.12+8.91 33.24+13.52

o 799.47+84.7 147.144+58.13 107.42+45.63
PSmom,AdN 200.83+286.48 12.49+2.92 11.22+2.32

* PSmorn,PCr

.
PSpmom,cr
“
PSmom,pi

156.65+£17.07
157.18+16.63
196.77+£20.96

184.92+136.09
194.64+£153.8
243.11+168.61

229.314+235.54
262.71+305.25
304.624+317.18
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Table 3.2: Shown are mean values and standard deviations for three parameter ensembles, generated
with prior o1y, 9y values of 0.107, 0.673 and 1.009 for parameters with unknown standard error.
* Parameters for which the default prior was used.

close to the prior. However, some parameters, e.g. Vinaz, a4+ Kadp 0r Kp; only show
a slight increase of the standard deviation in the posterior distribution with increased
default prior (see Table 3.2), which indicates that they can be estimated relatively
well, since they are more strongly constrained by the data. Remarkably, the posterior
standard deviation for P.S,,om, 44N increases with decreasing default oy, for the other
parameters. Since a smaller prior value decreases variability of the affected paramet-
ers in the sampling process, PSp,om,Adn, being the only unconstrained parameter,
can compensate for the decreased flexibility when fitting the data and therefore its
standard deviation in the ensemble may be increased.

3.7.2 Predictions

In order to test the effect of altered default 0;,9 values on model predictions of the
contributions of PCr to high-energy phosphate transport across the mitochondrial
outer membrane and the buffering of ATP synthesis rate and ADP concentrations,
we performed ensemble predictions for all three parameter ensembles with the altered
default priors.

Figure 3.9 shows the prediction of the relative PCr contribution to high-energy
phosphate flux across the mitochondrial outer membrane (Rdiff,PCr) for normal and
inhibited CK activity. With a low default prior standard deviation, we predict PCr
to contribute not more than 20% to energy transport (Figure 3.9A). As expected,
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Figure 3.9: Ensemble predictions of energy transport from mitochondria to cytosol by PCr for
different default priors. Prior o, for parameters with unknown standard error was set to (A)
0.107, (B) 0.336, (C) 0.673 and (D) 1.009. Plotted are the relative PCr contribution to high-
energy phosphate flux across the mitochondrial outer membrane (Ra;p¢, pcor) for active and inactive
(inhibition by 98%) creatine kinase and the forcing function of pulsatile ATP hydrolysis in the
myofibril. Plotted regions represent the 95% confidence interval for all predictions in an ensemble.
Please note the different scales for left and right y-azes in each panel.
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the prediction becomes more uncertain when increasing the prior standard deviation.
However, at a prior oy, of 1.009, although Rg; s pcy slightly exceeds 60% during
diastole (Figure 3.9D), the average predicted PCr contribution still is relatively low
at about 25%. Ensemble predictions of the damping of oscillations in ATP synthesis
rate and cytosolic ADP concentrations are shown in Figure 3.10.

The amplitude of the time course of ATP synthesis increases from 117.4 +10.5
puM s~ to 431.74£19.3 uM * s~ if CK is inhibited, given a low o, of 0.107 (Fig-
ure 3.10A). With the highest prior standard deviation we tested (07,0 = 1.009), the
amplitude of ATP synthesis is higher and the prediction more uncertain (309.94+68.1
puM x s~1 at active and 720.14:63.6 uM x s—1 at inactive CK, see Figure 3.10G). The
effect of higher prior standard deviations on the amplitude of the ADP concentration
is smaller than the relative effect on the amplitude of ATP synthesis. At the smallest
tested default prior, the prediction of the amplitude in ADP concentration for active
and inactive CK conditions is 57.8+5.7 and 144.54+2.5 M, respectively (see Figure
3.10B). The ensemble with the highest default prior standard deviation predicts the
amplitude in ADP concentration to be 81.3+24.7 uM (CK active) and 147.24+11.5
uM (CK inactive), which is shown in Figure 3.10H.

3.8 Supplemental text 2: Model analysis with addi-
tional microcompartment which couples CK to
the adenine nucleotide translocator

The Mi-CK may be functionally coupled to oxidative phosphorylation via the adenine
nucleotide translocator (ANT) [Jacobus et al., 1982, Vendelin et al., 2000, 2004]. Com-
partmentation of adenine nucleotides in a separate compartment between ANT and
Mi-CK cannot completely explain the change in apparent ATP dissociation constants
from Mi-CK during activation of oxidative phosphorylation, but phenomenological
models and constants for dynamic compartmentation are considered sufficient to de-
scribe functional coupling in models of energy fluxes in the cell [Vendelin et al., 2004].
We therefore investigate the potential effects of functional coupling on our conclu-
sions by analysis of the experiments with the model of Vendelin et al. [Vendelin
et al., 2000]. In that model ATP and ADP exchange via the ANT between the mi-
tochondrial matrix and a microcompartment which also gives access to Mi-CK. The
extremely small volume of the microcompartment enables a direct substrate-product
channelling between ANT and Mi-CK. We simulated the experimental data with the
parameters in [Vendelin et al., 2000]. For the heart rate steps from 135 to 160, 190
and 220 beats/min t,,;t, was 0.19, 0.19 and 0.2 s, respectively, in the model simula-
tion with CK fully active, to be compared with 3.0, 3.9 and 5.25 s in the experiments.
With CK inhibited by 98%, tmito was 14.7, 11.3 and 10.2 s, while these values were
1.8, 2.5 and 3.3 s in the experiments. It is clear that the simulation results of the
model of Vendelin et al. differed very much from the experimental values. We then
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Figure 3.10: Ensemble predictions of oscillations of ADP levels and oxidative phosphorylation for
different default priors. Predictions of ATP synthesis rate and ADP concentrations from ensembles
sampled with prior o1,e of (A, B) 0.107, (C, D) 0.336, (E, F) 0.673 and (G, H) 1.009. Dark and
light grey regions show the 95% confidence interval for ensemble predictions with full and inhibited
(2% activity) creatine kinase activity, respectively. The forcing function of ATP hydrolysis is plotted
in black. Please note the different scales for left and right y-azes in each panel.
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Figure 3.11: Parameter fit for the model of Vendelin et al. to response times of oxidative phos-
phorylation measured in isolated rabbit hearts. Model parameters were estimated using a modified
Levenberg-Marquardt algorithm. Dark grey bars represent the tmito values from the experiment
[Harrison et al., 2003], the lighter shaded bars bars represent the tmito values predicted by the model
with the original parameters given in [Vendelin et al., 2000] and after parameter adjustment by the
fitting procedure. Data is available for sixz different conditions: three different amplitudes of heart
rate jump (from 185 bpm to 160, 190 and 220 bpm heart rate), each one measured with full wild-
type CK activity (100%) or with CK activity inhibited to 2% of wild-type value. Note that in this
optimisation, all model parameters where allowed to deviate during the fitting procedure.

applied our optimisation strategy and the tmito became 3.3, 3.4 and 3.5 s for the full
CK activity for heart rate steps to 160, 190 and 220 beats/min, and 4.1, 3.8 and 3.7
s with CK inhibited by 98%.

Results of the initial simulations and model predictions after parameter fitting
are shown in Figure 3.11. The correspondence with the experimental data is still
unsatisfactory after parameter adjustment by the optimisation procedure.
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4.1 Abstract

The human physiological system is stressed to its limits during endurance sports
competition events. We describe a whole body computational model for energy con-
version during bicycle racing. About 23% of the metabolic energy is used for muscle
work, the rest is converted to heat. We calculated heat transfer by conduction and
blood flow inside the body, and heat transfer from the skin by radiation, convection
and sweat evaporation, resulting in temperature changes in 25 body compartments.
We simulated a mountain time trial to Alpe d’Huez during the Tour de France. To
approach the time realized by Lance Armstrong in 2004, very high oxygen uptake
must be sustained by the simulated cyclist. Temperature was predicted to reach 39
°C in the brain, and 39.7 °C in leg muscle. In addition to the macroscopic simula-
tion, we analysed the buffering of bursts of high adenosine triphosphate hydrolysis by
creatine kinase during cyclical muscle activity at the biochemical pathway level. To
investigate the low oxygen to carbohydrate ratio for the brain, which takes up lactate
during exercise, we calculated the flux distribution in cerebral energy metabolism.
Computational modelling of the human body, describing heat exchange and energy
metabolism, makes simulation of endurance sports events feasible.

4.2 Introduction

The human physiological system is stressed to its limits during endurance sports
competition events such as bicycle racing or marathon running. By computational
modelling of the body during such challenging events, we can investigate adaptation
under extreme stress, which is not only useful to understand the physiology of athletes
but also of rescue workers, fire fighters and mountaineers, and others who must per-
form close to maximal capacity. Understanding the body’s response under maximal
stress may also help to understand disease processes. For instance, tissue hypoxia
may be caused by great exertion rather than by ischaemia or tumour growth. Other
examples are dehydration, high body temperatures caused by exertion rather than
fever, and high blood lactate levels caused by physical exertion rather than hypoxia
or shock [Alders et al., 2011].

Physical exercise affects human physiology at multiple scales. The physical work
done by athletes is associated with force exertion, temperature changes in the whole
body, sweat excretion and increased uptake of oxygen, water and food, all measurable
at the whole body level. At the cellular scale, adenosine triphosphate (ATP) hydro-
lysis energises the interaction of actin and myosin molecules in the sarcomeres of the
muscle cells. The response of the body involves an extensive interplay between various
organs. The heart, for instance, starts to pump more blood to transport oxygen and
carbon substrates to the muscle and remove carbon dioxide, lactic acid and heat. The
brain participates, among others, by regulating lung ventilation, but is challenged
with increased lactic acid levels and higher blood temperature, potentially altering
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neuronal metabolism. The brain also controls muscle coordination and, importantly,
determines the motivation of the athlete to perform maximally despite high brain
temperatures, acidification, fatigue and sometimes even pain [St Clair Gibson and
Noakes, 2004]. To prepare for the effort, the gut has to digest food to provide carbon
substrates to the muscle cells via the blood stream. The whole body response is co-
ordinated via hormones and the nervous system. In conclusion, modelling the human
physiological system at macroscopic and microscopic scales during maximal athletic
performance is an excellent test to demonstrate the possibilities of computational
modelling for the physiome/virtual physiological human. The multi-scale aspects of
modelling human physiology arise very naturally in this context.

Here, we will implement a whole body model for energy conversion and heat trans-
port. The latter is very relevant because almost 80% of the metabolic energy during
exercise is converted to heat. We will couple this whole body model to equations for
the motion and external power requirements during cycling. At the sub-cellular scale,
we will look at models for intracellular events, which have a much higher biochemical
and/or time resolution than the whole body model. We discuss the supply of meta-
bolic fuel for exercise by nutrition. In addition, we introduce a model of metabolic
flux distribution to predict how brain metabolism may deal with higher blood lactate
levels. Metabolic events in the muscle cells are analysed at high time resolution with
a model for the buffering of bursts of high ATP hydrolysis caused by the rhythmic
muscle contractions during bicycle racing.

To demonstrate the applicability of whole body modelling to world class ath-
letic performance, we simulate a mountain time trial in the Tour de France from
Bourg d’Oisans to Alpe d’Huez. As the basis for our virtual cyclist, we use published
physiological data [Coyle, 2005] for Lance Armstrong, sevenfold Tour de France cham-
pion'.

4.3 Implementing a whole body model of human
energy conversion and heat transport

We will start with the description of a whole body computational model that describes
the physiological system of an athlete performing external work at the macroscopic
level. Although the model can be applied to various endurance sports, we will apply
it to bicycle racing here.

The energy conversion relevant to propel the bicycle takes place in muscle. During
cycling, less than a quarter of the energy obtained by burning nutrients with oxygen is
converted to external work. The remainder of the energy is converted to heat, which
is transported from the muscle by thermal conduction and circulatory convection.
The blood also delivers oxygen and carbon substrates to the muscle and carries away

L Armstrong’s seven Tour de France titles were revoked in August 2012, nine months after the
publication of this article.



76 CHAPTER 4. SIMULATING THE PHYSIOLOGY OF ATHLETES

the breakdown products, such as carbon dioxide and lactic acid, in addition to heat.
The heat is distributed through the body by the blood and raises the temperature
in all organs, including the brain and skin. The heat transported to the skin can
be dissipated for a major part by evaporation of sweat. Which muscle groups are
active depends on the type of exercise. Because of the specific localisation of muscle
activity and the extensive interplay between all organs, it is highly desirable that the
whole body model contains multiple segments to represent distinct muscle groups and
organs.

The whole body model can be viewed conveniently to consist of a controlled sys-
tem, which contains metabolism and heat transport in blood and tissue, and a con-
trolling system that regulates the response of the controlled system by neural and
hormonal signals. Heart rate, cardiac output and lung ventilation increase under con-
trol of nerve signals from the brain. Sweat excretion and skin vasodilation are, for
an important part, under central neural control. Therefore, the controller part of the
model represents the action of the nervous and hormonal system on the heat trans-
port in the controlled system, which consists of heat capacities, thermal conductance,
tissue perfusion, etc.

A macroscopic model of human whole body physiology was described by Stolwijk
& Hardy [Stolwijk and Hardy, 1966a] and originally implemented on an analogue
computer. It provides a set of equations that fulfil the requirements outlined above.
The model for the analogue computer was modified and implemented on a digital
computer by Stolwijk for the National Aeronautics and Space Administration [Stol-
wijk, 1971]. The equations of the latter computational model were incorporated in
the model presented here.

4.3.1 Representing compartments in the body: the controlled
system

The controlled system of the body is divided into six segments in the model. The
central segment of the body (the trunk) consists of the thorax and abdomen. Other
segments represent the head, arms, hands, legs and feet (see Figure 4.1).

Each of these segments is divided into four nodes: skin, (subcutaneous) fat, muscle
and a core node. The central blood volume in the large blood vessels and cardiac
cavities forms the 25" node. The cardiac output representing the total blood flow is
partitioned to all the other 24 nodes and exchanges heat with the tissue. To each node,
a certain mass, heat capacity and basal metabolic rate are assigned. For the head,
for instance, the muscle mass is relatively small (about 0.4 kg), while in the legs, the
muscle mass is large (about 10 kg). The core node of the head segment is relatively
large (3 kg) because it represents the brain and the skull. The muscle nodes can
contribute to external work by energy conversion from nutrients and oxygen. Below,
we provide an outline of the model. Detailed equations for the model are given in the
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Figure 4.1: Scheme of the whole body model of heat transport. (a) The body is divided into siz
segments: head, trunk, arms, hands, legs and feet. Each segment consists of four layers approrimated
by concentric cylinders, except the head, which is a sphere. (b) Adapted from Stolwik [Stolwijk,
1971]. Heat is generated by metabolism, exchanged with the blood perfusing the layer and conducted
to adjacent layers. Heat is dissipated from the skin by evaporation, but also by convection and

radiation.
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online supplementary material?.

Metabolism leads to substantial heat generation in the muscle nodes, which is
calculated from the total metabolic rate by subtracting the contribution made to
external work. The generated heat divided by the heat capacity of each node gives
the potential rate of increase of the local temperature. Each node receives a fraction
of the total cardiac output, and heat generated in the tissue is exchanged with this
blood flow. Heat is also transported between the adjacent nodes by heat conduction
through tissue. From the surface of the body inward, layers of skin, fat and muscle
are encountered until the core of the segment is reached. This is represented by the
four nodes per segment. The simple equation for conductive heat transfer T'D from
node N to node N + 1 is

TD[N] =TC(Tn — Tn+1) (4.1)

where TC is the thermal conductance, which is multiplied by the temperature
difference between the nodes. For the skin nodes, this equation is replaced by an
equation that takes radiative, convective and evaporative heat loss to the environment,
including the effects of humidity and ambient temperature, into account (see the online
supplementary material). The convective heat transport BC[N] from a node by blood
flow BF is given by

BC[N] = BF[N] * Cblood * (TN - Tcentralblood) (42)

with Chooq the heat capacity of blood. This equation is simple because the tem-
perature in blood flowing through small arteries and arterioles becomes almost equi-
librated with tissue, even before it reaches the capillaries [van Beek, 1996].

The rate of change, dT'/dt in temperature of node N is given by

dTn

C * —
node dt

= Q[N] —TDIN]+ TD|N — 1] — BC|N] (4.3)

The metabolic heat generation Q[N] consists of a basal heat production rate
QB[N] plus a potentially large additional heat production in muscle during exercise.
Chode 1s the heat capacity of the node. Even if a node has low Q[N], its temperat-
ure may rise considerably because of heat conduction from adjacent nodes and heat
transfer from the blood. Heat may, for instance, be transferred from leg muscles to
the brain and skin via the blood.

A large quantity of heat is transported to the environment via the skin by radi-
ation, convection and evaporation of water. Water is excreted from the sweat glands
under central and local control. The skin also loses heat by convection, which is very
much increased by high air velocity. This velocity is not only caused by the wind,

?http://rsta.royalsocietypublishing.org/content/369/1954/4295/suppl/DC1
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but also by the motion of the cyclist. A small fraction of heat is given off to air in
the airways and lungs by conduction and evaporation. Detailed equations are given
in the online supplementary material.

4.3.2 Sweating, shivering and increasing cardiac output: the
controlling system

The body senses the local temperature in various locations, among others in the
brain and in the skin. Signals from the sensors are sent to the brain. If temperature
is increased, the central controller sends signals to cause skin vasodilation and sweat
production. If body temperature falls, signals are generated to produce heat by
shivering and to constrict the blood vessels that control skin blood flow. Relatively
little is known about the nervous mechanisms that sense tissue temperature and which
form the control system in the brain, generating efferent signals to effector mechanisms
that control heat generation and transport in the body [Werner, 2010]. Peripheral
nerve signals have been measured that are responsive to temperature, and the anterior
hypothalamus region of the brain is sensitive to temperature changes. However, there
is insufficient information about the nervous regulation of temperature to model the
controller in mechanistic detail.

Therefore, in the computational model, a simple black box approach was chosen:
the deviation of node temperatures from a reference temperature constitutes the in-
put to the central controlling mechanism [Stolwijk, 1971]. In particular, the central
controller uses the temperature of the brain and of the skin nodes as input. Un-
der thermoneutral conditions, the error signal is assumed to be zero, and no efferent
signals are generated to stimulate sweating, skin vasoconstriction, vasodilation or
shivering. It is unlikely that the temperature is explicitly compared with a set point
in the real body [Werner, 2010], but the simple black box formulation adequately
describes thermoregulatory responses.

The equations describing the controller were parametrised based on extensive
measurements of the relation between input signals (brain and skin temperatures)
and output signals (rate of sweat evaporation, blood flow to the skin) [Stolwijk and
Hardy, 1966a, Stolwijk, 1971]. Therefore, the simple equations describe the reaction
of the human body to temperature change adequately, based on a solid experimental
basis. The equations and parameter values for the control of vasodilation, vasocon-
striction in the skin, sweating and shivering are given in the online supplementary
material.

4.3.3 Representing voluntary control of muscle activation

For an athlete who tries to win a race, not only the physical work capacity counts, but
also the motivation to go to the limits of performance despite exhaustion and perhaps
even pain. The key parameter for the physical capacity is the maximal oxygen uptake
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of the athlete that can be measured in the laboratory. However, during a long effort,
oxygen uptake cannot be sustained at the same level as during a relatively short test
in the laboratory. The available mechanical power tends to show a downward trend
during a long race [St Clair Gibson and Noakes, 2004]. Because the complex neural
processes that determine the sensation of fatigue and exhaustion and the voluntary
control of muscle contraction during exertion are insufficiently known, in the present
model, these mental processes are enormously simplified by a ‘brain push’ factor,
which gives the fraction of maximal oxygen uptake that will be used by the athlete.

4.3.4 Integrating the model

The ordinary differential equations were implemented and integrated in R computing
language using the Isoda routine, which is based on algorithms by Hindmarsh [Hind-
marsh, 1983] and Petzold [Petzold, 1983]. R is a high-level computer language and
computational environment, which is open source and provides a large collection of
open-source analysis tools.

4.4 The power required for bicycle racing

The external mechanical power available to increase and maintain the speed of the
cyclist-bicycle system is delivered by the muscle nodes in the computational model of
the cyclist. Physical power equals the force propelling the bicycle times the velocity.
The opposing forces that must be overcome to propel the bicycle are (i) the frictional
force of the air (wind drag), (ii) the frictional force of the tyres on the road (rolling
resistance), (iii) the component of the force of gravity, which is parallel to the road
surface when climbing, and (iv) the force used to accelerate or decelerate. The external
power delivered by the cyclist’s muscles is balanced by the power of the opposing
forces. A voluntary decision to exert more force is associated with more external
power and may lead to acceleration.

Equations describing the components of the resistance to motion have been derived
and their coefficients measured. The rolling resistance (R,.) is a force (in N) given by

R, = Cg, coslarctan(S)|(M + Mp) (4.4)

where S is the gradient of the road (i.e. vertical distance/horizontal distance),
M is the mass of the rider and M, is the mass of the bicycle [Olds et al., 1993].
This expression gives the normal force exerted by the combined mass multiplied by
a constant C'r, that depends on wheel radius and road surface and is approximately
inversely dependent on tyre pressure. The friction of the chain and other moving
parts of the bicycle are usually negligible. The measured values of the parameters
in the power equations and further equations are given in the online supplementary
material.
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The air resistance given as a force in N is

Ry = k(vss + vw)2 (4.5)

where v, is the speed of the bike relative to the road and v,, is the speed of the head
wind relative to the road (negative for a tail wind) [Olds et al., 1993]. The coefficient
k is proportional to the frontal projected area and air density. This dependency is
given quantitatively in the online supplementary material.

If the road is sloping, the component of the weight of rider plus bicycle parallel to
the road, Fy, is needed to account for gravity. An additional force Fj.. can be used to
accelerate. The instantaneous power needed to propel the cyclist at a certain moment
in the race equals the instantaneous velocity multiplied by (R, + R, + Fy + Fucc)-
The power to propel the bicycle is balanced in the model by the power of muscle
work made available from metabolic processes. This power is determined not only
by the cyclist’s physical capacity, but also by the motivation to win and the pacing
strategy that is consciously followed (e.g. starting as fast as possible versus somewhat
slower to save energy for later). The motivational factors are represented by the brain
push factor mentioned above. The balance of the power required and delivered by the
cyclist determines whether he accelerates, decelerates or maintains a steady speed.
The acceleration is integrated to obtain the speed of the cyclist, which determines the
road distance covered. The equations in the computational model are given in the
online supplementary material.

4.5 Simulating a time trial to Alpe d’Huez

Here, we apply the model to simulate a mountain time trial in the Tour de France.
The time trial starts in the town of Bourg d’Oisans at an altitude of about 720 m
above sea level, and ends after 15.5 km in the town of Alpe d’Huez at an altitude of
1850 m. The conditions are similar to the mountain time trial in the Tour de France
on 21 July 2004, although we emphasise that exact correspondence to the parameters
of the time trial and the cyclist could not be established. The altitude of the road at 1
km intervals was obtained from published profiles. From these altitudes, we calculated
the slope of the road with a 1 km resolution. The climb starts 1.5 km from the start
and the slopes vary between 8 and 11% for three quarters of the distance covered. For
the anthropometric and physiological characteristics of the rider in the model, we use
published data for Lance Armstrong [Coyle, 2005], who won the stage with a time of
about 39 min 41 s, more than 1 min faster than Jan Ullrich, who finished second.

In the simulation, the body mass of the rider was estimated to be 72 kg during
the race, and his maximal oxygen uptake determined in the laboratory is 6.1 1 Os per
minute, which is the highest value recorded during repeated laboratory tests for this
individual [Coyle, 2005]. An important parameter determined in the laboratory is
the Aefficiency, which is defined as the increase in work accomplished on the bicycle
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ergometer per unit time divided by the energy expended during the same time. The
energy expended was calculated from the measured oxygen uptake and reflects the
energy available from the oxidation of metabolic fuel, mainly carbohydrate and fat,
with oxygen. The work accomplished per unit time is measured by determining the
mechanical power delivered by the cyclist to the bicycle ergometer. The increase
in oxygen consumption from the resting level the cyclist manages to accomplish is
multiplied by the Aefficiency, 0.231 in this case, and by the total energy expended
per amount of oxygen to calculate the energy available for propelling the cycle-cyclist
system.

For the hypothetical case that the cyclist would be able to use 100% of his maximal
oxygen uptake, as measured during a short bout of intense exercise in the laboratory
at lower altitude, the simulation predicts that the time to complete the 15.5 km up
to Alpe d’Huez is 38 min 31 s. Here, it was assumed that the decrease in barometric
pressure during the climb to 1850 m leads to reduced air resistance because of lower air
density. For two important reasons, it is not realistic to assume that 100% of maximal
oxygen uptake can be sustained. Firstly, it is generally found that cyclists can sustain
less than 100% oxygen uptake if the effort lasts longer than 10 min [Olds et al., 1993].
The second reason is that the progressively lower oxygen partial pressure in the air
at higher altitude will lead to lower maximal oxygen uptake. The relative reduction
of maximal oxygen uptake with a lower concentration of oxygen in the air exists in
untrained subjects, but is even stronger in trained athletes [Ferretti et al., 1997],
where an average decrease of about 13 % in oxygen uptake is found if oxygen partial
pressure in the air falls by 24%. At an altitude of 1850 m, oxygen partial pressure is
expected to be decreased by about 20% relative to sea level. If the simulation includes
this effect of hypoxia on oxygen uptake, the predicted time becomes 41 min 22 s.

The actual time of Lance Armstrong in 2004 was about 39 min 41 s. This time is
found in the simulation of the virtual cyclist if 96.5% of the maximal uptake of 6.1 1
O- per minute can be sustained during the climb to Alpe d’Huez, assuming no further
reduction owing to altitude hypoxia. A sustained fraction of 0.965 during about 40
min is very high relative to trained (but non-professional) cyclists [Olds et al., 1993].
To obtain the time realized by Lance Armstrong during the mountain time trial, it is
necessary to assume an oxygen uptake of about 5.9 [ * min~! for the virtual cyclist,
despite the reduced oxygen partial pressure encountered when climbing from 720 to
1850 m. Given that professional cyclists often aim for peak performance at the time of
decisive races, it is possible that a higher value of maximal oxygen uptake (VOsmax)
was valid during the Tour de France in comparison with the value of 6.1 1 Oy per
minute reported for the laboratory tests, which were carried out in earlier years.

Assuming a very high will power of the simulated cyclist such that he is able to
maintain 95% of the maximal O, uptake and assuming that the reduction of oxygen
uptake by altitude hypoxia is as measured by Ferretti et al. [Ferretti et al., 1997] for
trained endurance athletes, we estimate that the maximal oxygen uptake measurable
at sea level should have been 6.74 1 Oy per minute to complete the time trial in 39
min 41 s. We emphasise that it was not possible to obtain all parameters for the cyc-
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list and the time trial with great accuracy, implying that we most probably obtained
incomplete correspondence between the virtual cyclist in the model and Lance Arm-
strong during the 2004 time trial. Our estimates of oxygen uptake must, therefore, be
treated with great caution. For instance, the sensitivity of real professional cyclists
to altitude hypoxia may differ from that assumed in the model. We assumed that the
simulated cyclist would be able to maintain 95% of maximal O, uptake, i.e. the brain
push factor mentioned above. If this value is actually higher or lower, the estimate of
the maximal Oy uptake corresponding to the performance during the time trial will
have to be adapted.

Simulation results for tissue temperatures and power dissipated by air resistance,
rolling resistance and gravity for the cyclist with 6.74 [xmin~! maximal O2 uptake are
given in Figure 4.2. About 77% of metabolic energy was measured to be converted
to heat in this Tour de France champion [Coyle, 2005], which leads to significant
warming of leg muscles and brain to over 39 °C.

The cyclist who finished second in 2004 was reported to be 5 cm taller than Lance
Armstrong. If the body height of the virtual cyclist is increased from 179 cm to 184 cm,
the model simulation predicts that the time needed for the time trial becomes about
3 s longer. If the total weight of the rider and bicycle is 2.4 kg larger, with muscle
mass and oxygen uptake constant, the predicted time becomes 40 min 42 s, which
is about the time of Jan Ullrich, who finished second in 2004. Larger body weight
may, among others, be caused by greater fat or skeletal mass. The slowing effect
of the added weight is for the largest part caused by the increase in the component
of the gravitational force parallel to the road surface. However, smaller effects are
due to the component of the force normal to the road surface increasing the rolling
resistance, and to increased air resistance owing to increased size of the body. This
illustrates that small differences in body size can have significant impact on athletic
performance.

4.6 Validating the whole body model

The parameters of the controlled (e.g. metabolism and heat transport) and controlling
systems (neural and hormonal regulation, see detailed explanation above) were meas-
ured on human subjects [Stolwijk and Hardy, 1966a, Stolwijk, 1971]. For new subjects
with other characteristics than the original study group, the model may reproduce
steady-state thermoregulatory responses less accurately. The transient response to
sudden changes in thermal stress forms a more stringent test than steady-state re-
sponses. To this end, an increase in air temperature from 30 °C to 48 °C for 2 h was
simulated. The temperature of the walls was equilibrated with the air temperature
during the experiment. The response of average skin temperature was measured to
increase from 34 °C to 36.5 °C [Stolwijk and Hardy, 1966b], while the model predicted
an increase from 33.4 °C to 36.3 °C. Both the present model implementation and the
original model of Stolwijk [Stolwijk, 1971] predict a temperature increase in the core
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Figure 4.2: Predictions of the main fates of metabolic energy converted in the muscle during the
mountain time trial. (a) The increasing temperatures of leg muscles and brain reflect heat genera-
tion. The increasing air velocity across the skin during the time trial leads to significant cooling, but
this effect becomes less at steeper slopes, where speed is diminished. (b) Power (in Watts) expended
against gravity, air resistance and rolling resistance. The sharp spikes in the power against gravity
are caused by the sharp transitions to different grades caused by the low resolution (1 km) by which
the slope of the road to Alpe d’Huez was known to us: the cyclist enters a section with a steeper
grade with high velocity and is subsequently slowed down by the increased opposing gravitational
force. The cyclist finishes after 15.5 km in 39 min 41 s.
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of the trunk, which was significantly smaller than the increase in rectal temperature
measured in a group of young subjects [Stolwijk and Hardy, 1966b].

We further simulated experiments by Nybo et al. [Nybo et al., 2002], where
subjects started to exercise at 174 W on a bicycle ergometer at 20 °C ambient tem-
perature. In the simulation, the brain temperature increased from 37.28 °C to 37.96
°C after 45 min. In the experiments, these numbers were 37.2 °C and 38.0 °C for
the jugular venous temperature at the base of the cranium, which is close to the
brain temperature. The time course of brain temperature was quite similar in the
simulation and Nybo’s experimental study.

The model equations of Stolwijk & Hardy [Stolwijk and Hardy, 1966a] are quite
extensive. Many measured trends and variables are predicted remarkably well, al-
though significant deviations from the measurements are also found [Stolwijk, 1971,
Stolwijk and Hardy, 1966b]. Indeed, Stolwijk discussed a number of shortcomings of
the model [Stolwijk, 1971]. Although the model in most cases predicts the right order
of the response, it is desirable to further validate and improve this extensive model.
Parameters may be fine tuned to fit special groups of subjects, for instance, trained
professional athletes. The model parameters are representative of a group of human
subjects studied in the laboratory, but were not yet adjusted for any individual, in this
case, a world class cyclist. The parameters can, for instance, be further fine tuned by
imaging the body of the modelled individual using magnetic resonance imaging and
obtaining the VOsmax closer in time to the real time trial. The frictional resistance
of the bicycle and air resistance in a wind tunnel could also be measured. It would
then be possible to test the model by measuring the speed and delivered power of the
cyclist and the slope of the road at greater resolution than has been possible here.
Heart rate, skin and rectal temperatures could be measured non-invasively during a
time trial. By weighing the body as well as fluid and food intake, the net evaporation
during the time trial can be assessed.

What is still hard to quantify is the athlete’s determination to voluntarily go as fast
as possible. The effort made by an athlete will vary during a race: often, it is very high
at the start of a time trial, falling quickly and sometimes showing periodic behaviour
[St Clair Gibson and Noakes, 2004, Jeukendrup et al., 2000]. In short, although
the model shows responses that are in line with existing experimental measurements
for groups of subjects, the model parameters may be adjusted to better approach
individual characteristics and may be tested in the field on individuals during a time
trial out of competition.

4.7 Time-resolved model of events at the muscle cell
level

In the whole body model discussed so far, metabolic processes inside muscle cells were
not modelled in detail. In this section, we focus on how energy metabolism at the
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cellular level can be described and predicted by means of mechanistic modelling with
much higher time resolution than feasible for the whole body model. Endurance ex-
ercise requires permanent energy supply to enable contractile work in skeletal muscle.
However, the amount of ATP in muscle cells is merely sufficient to energise two or
three maximal contractions in skeletal muscle under normal conditions [Lieber, 2002].
Therefore, aerobic and anaerobic ATP production must be tightly coupled with the
energetic demands of the muscle cell. Creatine kinase (CK) enzymes provide a buffer
between energy producing and consuming pathways. CK facilitates additional energy
storage in the form of phosphocreatine (PCr) by catalysing the reversible transfer of
a phosphate group to creatine (Cr),

ATP + Cr £5 ADP + PCr (4.6)

where ADP stands for adenosine diphosphate. Previously, long ago, PCr was sug-
gested to maintain intracellular ATP homeostasis during muscle contraction [Bergstrom,
1967]. The discovery of two distinct isoforms of CK, Mi-CK in mitochondria and MM-
CK in myofibrils, led to the hypothesis of a role of CK as an energy shuttle from ATP
producing to ATP consuming sites across the mitochondrial outer membrane (MOM)
[Bessman and Geiger, 1981]. In previous work, we investigated the functions of CK
using a mathematical model of energy metabolism in a cardiac myocyte integrated
with data from various scales [van Beek, 2007, van Beek et al., 2008, Hettling and van
Beek, 2011]. Our model predictions emphasised the role of CK in damping the rate of
oxidative phosphorylation and ATP and ADP levels during high-amplitude bursts of
ATP consumption during the cardiac cycle. In this section, we show that our model
can describe experimental data from human skeletal muscle collected during cycling.
As a result, our model predicts buffering of dynamic ATP synthesis and metabolite
levels.

The model consists of four major components in two compartments that capture
the key elements of the CK system (Figure 4.3a): (i) mitochondrial ATP production
by oxidative phosphorylation (OxPhos), (ii) high-energy phosphate transfer by Mi-
CK in the mitochondrial intermembrane space, (iii) the MM-CK reaction in close
vicinity to myofibrils, and (iv) ATPase activity, represented by a forcing function of
ATP hydrolysis simulating pulsatile energy consumption of the contracting muscle.

Parameter values for Mi-CK reaction, kinetics of ATP production and MOM per-
meability to metabolites were collected from van Beek [van Beek, 2007]. Kinetic
constants for skeletal muscle MM-CK were reported in Vicini & Kushmerick [Vicini
and Kushmerick, 2000] based on earlier measurements [McFarland et al., 1994]. To
fine tune all 22 kinetic model parameters, we use data from an experiment in which
10 well-trained subjects performed an incremental challenge on a bicycle ergometer at
submaximal workloads of 40 and 75% of their maximal aerobic capacity (VOamax).
After each workload challenge, a muscle biopsy from the quadriceps femoris was taken
and analysed for intracellular concentrations of ATP, PCr and Cr (Figure 4.3b) among
others [Sahlin et al., 1987]. The [H*] concentration reported for this study ranged
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Figure 4.3: (a) Scheme of the model of the creatine kinase (CK) system. Cell and mitochondrial
membranes are indicated. Cr, creatine; PCr, phosphocreatine; Pi, inorganic phosphate; OxzPhos,
ozidative phosphorylation. (b) Steady-state metabolite concentrations at the end of a 600 s sim-
ulation compared with data from cycling exercise experiments at different submazimal workloads
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from 0.89 * 10" M at rest to 1.20 * 10°M at 75% of VOq(maz) [Sahlin et al., 1987,
and was taken into account in the calculation of the CK reaction [Lawson and Veech,
1979]. Maximal aerobic work rates were excluded from this analysis because anaerobic
metabolism starts to play a major role and is not yet included in the model.

To estimate the rate of ATP hydrolysis powering contractile work in leg muscle, we
use the average VOomax of 4.1 [*min® of the subjects in the bicycling exercise [Sah-
lin et al., 1987], measurements of aerobic capacity in skeletal muscle [Gnaiger, 2009],
and assume 10 kg active leg muscle mass for well-trained athletes [Tipton, 2005]. Fur-
ther, we assume a P/O ratio of 6, meaning that six molecules of ATP are produced
per molecule of oxygen consumed [Tipton, 2005]. From this, we estimate an average
ATP hydrolysis flux, Jarp,nyd, of 628 and 1175 M * st for 40 and 75% of V Ogymax,
respectively. Parameter estimation was done with the downhill simplex algorithm
implemented in the SLOPPYCELL modelling environment [Gutenkunst et al., 2007a).
Because the kinetic parameters were taken from solid experimental data [McFarland
et al., 1994], we constrained these parameters based on their reported measurement
error using Bayesian prior terms added to a least-squares cost function. Parameters
for which no measurement error was reported in the literature were constrained by a
default prior term as in Hettling & van Beek [Hettling and van Beek, 2011]. Taking
this a priori information into account yields more robust parameter values [Guten-
kunst et al., 2007b]. Results of the parameter fit to the metabolite concentrations
for two experimental conditions are shown in Figure 4.3b. The model predicts a de-
cline of PCr, the high-energy phosphate store, with increasing workload, while ATP
levels stay relatively constant. The model predictions for PCr, Cr and ATP are relat-
ively close to the measured values, despite the fact that the kinetic parameters in the
model were kept close to their reported literature values by constraining them with
their measurement error using Bayesian priors.

A limitation of the present model analysis is the absence of glycolytic ATP form-
ation. Tissue lactate levels were reported to be substantially elevated going from rest
to 75 per cent of VOs(max) [Sahlin et al., 1987] at the time point of the phosphate
metabolite measurements (Figure 4.3b). Because lactate production may change at
later stages of exercise, the incorporation of dynamic changes in lactate production
and intracellular pH in future modelling work is desirable.

For many professional cyclists, mechanical efficiency is maximised at pedal ca-
dences around 90 r.p.m. [Joyner and Coyle, 2008]. In order to simulate alternating
energy usage of the leg muscle at this frequency, we used a pulsatile forcing function
of ATP hydrolysis. The shape of the ATP hydrolysis pulse is triangular (Figure 4.3c),
as used previously for a beating heart [van Beek, 2007]. The leg muscle is assumed
active during one-third of the pedal stroke cycle. This time course and the fractional
value of one-third is close to predictions based on biomechanical calculations and
to electromyographic measurements of the activity pattern in the quadriceps muscle
during one pedal stroke [Redfield and Hull, 1986]. Given this triangular activation
curve during one-third of the total cycle, the peak value of the ATP hydrolysis rate
is sixfold the average ATP rate, which in turn is estimated from oxygen consumption
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data.

To investigate the effectiveness of CK in buffering these pulses in ATP demand,
we simulated conditions of normal and impaired enzyme activity (Figure 4.3c). With
normally active CK, the amplitude of ATP synthesis is almost fully buffered. Blocking
CK by 98% results in a ninefold increase of the amplitude of the ATP synthesis
oscillations from 106 to 938 uM x s~!. These results demonstrate the importance
of the CK system in maintaining cellular ATP homeostasis and buffering of high
amplitudes in mitochondrial ATP production in skeletal muscle during cycling.

4.8 Detailed models of carbon metabolism in the
cell

Energy for muscle contraction is derived from the oxidation of carbohydrates and fatty
acids derived from the food. The energy is used to synthesise ATP. The pathways
for the metabolism of these carbon substrates may be analysed with computational
models, which represent the biochemical reaction networks consisting of enzymes and
of metabolites. A certain metabolite can be produced by one particular type of
enzyme and be used by the next enzyme in the metabolic network. The enzyme
content determines the maximal rate at which a reaction can take place. The precise
distribution of the flow of carbon in the intracellular metabolic pathways can be
predicted by models of interconnected metabolic reactions. The calculation of the
flux distribution in the network resembles calculations based on Kirchhoff’s law in
electrical circuits: the amount of material flowing into a node in the network must
equal the amount of material flowing out. For instance, if reaction 1 produces a certain
metabolite X at flux V;, while reactions 2 and 3 consume one and two molecules,
respectively, of X at fluxes V5 and V3, the balance equation for metabolite X is

Vi—Va—2V3=0 (4.7)

Additional constraints on the flux distribution can be derived from biochemical
knowledge. The enzyme cytochrome oxidase that transfers electrons to oxygen op-
erates, for instance, in an irreversible way and will never produce oxygen. The first
enzymatic reaction in the glycolytic pathway after the uptake of glucose in the cell is
an irreversible reaction catalysed by the enzyme hexokinase,

glucose + AT P — ADP + glucose—6-phosphate (4.8)

Some, but not all, reactions in the biochemical networks have such an irrevers-
ibility constraint. Measurements on input and output fluxes from cells or measured
capacities of enzymes may form additional constraints. In this way, flux balance ana-
lysis (FBA) [Duarte et al., 2007] derives the possible distribution of metabolic fluxes
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in the network. If some of the most relevant central pathways of metabolism are in-
cluded (e.g. the glycolytic pathway, the pentose phosphate pathway, the tricarboxylic
acid cycle and transamination of carbon skeletons to amino acids), a model of flux
distribution often contains more than 50 enzymatic reactions.

4.8.1 A computer package to calculate flux distributions

Most of the relevant reactions in the cell can be found in databases of metabolic path-
ways. In order to facilitate the building of metabolic pathway models, we developed
the computer package BiGGR, which, among others, downloads the reactions from
the Biochemical, Genetic and Genomic (BiGG) knowledgebase of metabolic recon-
structions, which contains several thousand manually curated enzymatic reactions for
the human system [Duarte et al., 2007]. The name BiGGR is derived from the BiGG
database [Duarte et al., 2007, Schellenberger et al., 2010], while R stands for the R
programming language. The R and Bioconductor framework are widely used among
the genomics community [Gentleman et al., 2004]. In BiGGR, the user can choose the
reactions for the model analysis. The computer program then builds the stoichiomet-
ric matrices from the chosen set of reactions describing all balance equations such as
equation 4.7. The first matrix contains the set of linear equations, where metabolites
are represented by the rows and reactions are represented by the columns. Linear
inequalities that represent the constraints are represented by a second matrix. The
systems of equations for metabolic systems are usually underdetermined [Duarte et al.,
2007]. Despite this situation, it is often possible to derive the range of values that are
feasible for the metabolic reactions. Sampling the flux space, for instance, by simple
uniform sampling, makes it possible to explore which combinations of fluxes are com-
patible with the constraints. Alternatively, one can sample a probability distribution
in flux space by a Markov chain Monte Carlo procedure: the probability that a point
in flux space is included in the sample is proportional to the probability that this point
represents measured data. If one can design a plausible linear combination of fluxes,
which forms a cost function to be minimised (e.g. the total production of metabolic
waste products) or forms a gain function to be maximised (e.g. the production of
ATP), it is often possible to determine a unique flux distribution although the system
of linear equations is underdetermined.

BiGGR facilitates FBA, building on a range of linear optimisation routines, which
were already available for R [Soetaert et al., 2009]. In addition, BIGGR also attempts
to automatically visualise the metabolic pathways using a ‘hypergraph’ format [Mur-
rell, 2013], plotting the numerical results of a flux analysis on the pathway graph.
More details about the BiGGR package can be found in chapter 6.

4.8.2 Simulating brain metabolism during exercise

Glucose is the main substrate for fuelling cerebral metabolism under normal physiolo-
gical conditions when blood lactate concentration remains low. The ratio of Oz up-
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take/glucose uptake is close to 6 [Dalsgaard, 2006]. During maximal exercise, glucose
uptake increases and the brain may also use arterial lactate released by the muscles
[Dalsgaard et al., 2004]. However, oxygen uptake does not increase proportional to car-
bohydrate uptake, indicated by a cerebral metabolic ratio (Oy uptake/(glucose+1/2
lactate) uptake), which falls below 3. The fate of carbohydrate in the brain during
exercise remains unknown [Rasmussen et al., 2010]. With nuclear magnetic reson-
ance spectroscopy, no glucose or lactate accumulation is found and the capacity to
synthesise glycogen may be too low to account for non-oxidised glucose and lactate
[Dalsgaard et al., 2004, Quistorff et al., 2008]. Immediately after maximal exercise, a
small increase of free fatty acid release is detected, while no change was measured for
other substrates including glutamine, glutamate and alanine [Dalsgaard et al., 2002].

To investigate whether excess carbohydrate uptake can be explained by fatty acid
synthesis, we developed a computational model that represents pathways of central
metabolism in the brain and simulated the fluxes of glucose and lactate metabolism
during rest and maximal exercise. Given the high lipid content of the brain, this is a
plausible hypothesis. The reactions in our model comprise central energy metabolism
and fatty acid synthesis in their appropriate compartments (cytosol and mitochon-
dria), and metabolite transport across the mitochondrial membranes. The inclusion
of the malate-aspartate and glycerol-3-phosphate shuttles allows for transport of re-
ducing equivalents between the cytosol and mitochondria. Amino acid synthesis of
alanine and glutamate/gamma-amino butyric acid (GABA) cycling were included.
Reactions are taken from the BiGG database, and measurements of substrate uptake
in the brain during rest and exercise were taken from Quistorff et al. [Quistorff et al.,
2008]. We use the linear inverse modelling routines [Soetaert et al., 2009] linked to
the package BiGGR for the calculations. The system is assumed to be in a steady
state, with a cost function to maximise ATP production. A list of full reactions and
constraints used in this model, input and output fluxes assumed for the cell, as well as
the flux distribution resulting from the analysis are given in the online supplementary
material.

At rest with no lactate present, metabolism of 0.4 mmol * min~! glucose in the
whole human brain is in agreement with the Os/glucose ratio and yields a maximal
mitochondrial ATP synthesis of 9.28 mmol * min~!. No flux through the pentose
phosphate pathway is predicted (Figure 4.4a). During 15 min of exercise, glucose
uptake doubles, and, in addition, 0.53 mmol * min~"! lactate and 3.2 mmol * min "
oxygen are taken up. We hypothesise that given the low ratio of oxygen to glucose
and lactate uptake, the carbon in these carbohydrates may be used to synthesise and
store fatty acids. We calculate that 0.14 mmol * min~! of fatty acid (equivalent to
palmitate with 16 carbon atoms) must be synthesised in the brain to balance glucose
and lactate uptake with the limited availability of oxygen to oxidise carbon (Figure
4.4b). The pentose phosphate pathway is now activated to produce nicotinamide
adenine dinucleotide phosphate, which is required for the synthesis of free fatty acid.
The result above suggests that fatty acid synthesis, perhaps followed by incorporation
into lipids that are abundantly present in the brain, is a possible pathway for the excess



92 CHAPTER 4. SIMULATING THE PHYSIOLOGY OF ATHLETES

A B
Jos Jos

0 GLC 097 _GLC
/ 10.4 / l
*A G3P % G3P
0.8 1.27
Free Fatty Free Fatty
5 0 0 i 0.53 0.53
acd PYR «—— LAC <—— LAC acd PYR <—— LAC <——— LAC
| |
To . ) 0.14 T80 \
Acetyl 0 4—4 0.8 Acetyl 1.10 0.70
CoAY -« cIT OAA > OAA CoAV «———ar OAA — =L »0pA
16 io.s 2.50 l1.80
0.8 1.80
0.8 MAL <€—— MAL 0.70 MAL <€-—— MAL
AKG AKG
0.8 0.70
e P
succ succ
o2 245 op YN 0/‘ 02 325 ) GLU o/‘
o GABA o GABA
N Mitochondria Na Mitochondria
9.28 12.80
2 e ), S5 e J
Cytosol Cytosol

Figure 4.4: Models of carbon metabolism in brain. (a) Simulation of cerebral energy metabolism at
rest and (b) during 15 min mazimal exercise. Substrate uptake is from Quistorff et al. [Quistorff
et al., 2008]. Fluz values are in mmol*min =1 for the whole brain. PPP, pentose phosphate pathway;
OzPhos, oxidative phosphorylation; GLC, glucose; PYR, pyruvate; LAC, lactate; GLU, glutamate;
GABA, gamma-amino butyric acid; MAL, malate; OAA, ozaloacetate; SUCC, succinate; AKG,
alpha-ketoglutarate; CIT, citrate; CoA, coenzyme A; G3P, glyceraldehyde-3-phosphate. Please note
that for clarity not all reactions are shown and the metabolites are sometimes balanced by reactions
that are not plotted. There is, for instance, a small backflux towards glucose in the upper part of
the glycolytic chain in (b).

carbon. Future experiments to measure storage of cerebral fatty acid, possibly using
stable isotope labelling of precursors [van Beek et al., 2009, Binsl et al., 2010a], allow
this hypothesis to be tested.

4.9 Future directions

The model approaches discussed address various spatial, temporal and biochemical
resolutions and are conceptually complementary. However, they were not yet linked
in an integrated computational framework and executed simultaneously. For the
buffering of the ATP hydrolysis peaks in the CK model, we calculated the amplitude
of ATP hydrolysis off-line. Yet, it seems feasible to couple the CK model to the whole
body model. In that way, the energy turnover in the leg muscles would be coupled
directly to the amplitude of ATP hydrolysis during cyclical work on the bicycle. The
levels of inorganic phosphate and the maximal ADP concentration during the cycle
could be used to indicate the fatigue status of the muscle and might be used to
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determine the obtainable level of exertion. The minimal concentration of ADP may
additionally indicate the risk of oxygen radical formation because of low stimulation
of the mitochondria.

To develop computational models of endurance sports performance further, it
might be very efficient if a framework existed where the modelling approaches at
various scales could be seamlessly integrated. In addition, if one builds and links
models of metabolic pathways, it is very efficient if one can integrate biochemical
reactions available from databases. A prerequisite for such an exchange of reactions
is a uniform standard nomenclature and symbols for metabolites, enzymes and other
entities in physiological models. For the present work, we used the nomenclature of
the BiGG database [Schellenberger et al., 2010], but it is clear that an ontology which
is generally accepted by the biomedical research community or enforced by leading
journals is needed.

Given the extensive research literature on sports physiology and the vast know-
ledge on basic biology, it is timely to start to develop quantitative models of human
physiology. Quantitative integration of physiological and biochemical knowledge in
computational models may facilitate the understanding of human performance, and
may increasingly become a central research tool for integrative physiology. Because
professional world class athletes push their performance to the very limits, model
analysis of their performance during sports events may provide a unique window on
human physiology. By demonstrating the application of virtual physiological model-
ling to sports or space travel, we may arouse the interest of the general public and
young scientists. The benefits for medical applications and enhanced safety surveil-
lance of athletes will no doubt follow.

Our model mainly predicts the maximal V' O, value achieved during the race. The
result suggests that VOsomax explaining the performance during the race is higher
than the maximum found in laboratory tests earlier in time. Athletes use all sorts of
methods to prepare optimally for the decisive race. Many athletes expose themselves
to low oxygen concentrations, for instance, by sojourn at high altitude or by breathing
gas mixtures with decreased oxygen content during sleep, to increase natural eryth-
ropoietin production. The winner of the 2004 time trial to Alpe d’Huez may have
used hypoxic exposure as reported in Coyle [Coyle, 2005]. In addition, athletes use
training schemes aimed at obtaining peak performance during the decisive stages of
the event.

Our model does not yet contain oxygen transport to make it possible to analyse
oxygen delivery and uptake. It is, therefore, not yet possible to analyse the effects of
illegal (recombinant erythropoietin and autologous blood transfusion) or legal meth-
ods (hypoxic exposure) to support increased oxygen uptake with our model, but this
may be an interesting future expansion of the model. An important aspect of pre-
paration for a long endurance sports event is optimal nutrition to supply sufficient
carbon fuel for long, intense exercise. The effect of nutrition on glycogen and fat
stores in the body and the interaction of carbohydrates and fat during exercise are
aspects that require extensive model analysis in the future. The glycaemic index or
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the glycaemic load, which describe the effect of various carbohydrate formulations can
be incorporated in the models [O’Reilly et al., 2010]. The interaction of protein given
in combination with carbohydrates may also be incorporated in the model description
of carbon substrate handling before, during and after exercise [Zawadzki et al., 1992,
Ivy et al., 2002]. An overview of nutritional support for athletic performance is given
in the online supplementary material.

A mathematical or computational model always represents a simplified reflection
of the real complex system. Even if we build increasingly complex models, we will
never completely approach reality. However, this poses no problem because we already
have the real system. Restricting ourselves to capture only the essential processes in
mathematical equations helps us to understand and predict the system’s behaviour.
Even if models gradually become quite complex, we can still track all interactions and
how they synergize to yield the overall result. The easy accessibility of variables in
computer models provides an advantage over the real system. Computational mod-
elling is, therefore, a powerful tool to integrate all the knowledge of human scientists
gathered in studies that, by themselves, consider only parts and details of the system.
By doing this, we also produce powerful tools to predict the performance of the human
body and learn how human body function may be improved in health and disease.

4.10 Conclusions

We conclude that simulation of athletic performance with a computational model of
energy turnover and heat transport in the whole human body is feasible. The maximal
oxygen uptake capacity of the athlete can be estimated based on performance in a
race. The temperatures in various parts of the body such as brain and active muscle
groups can be predicted. The changes in the phosphocreatine energy buffer status
can be predicted, although glycolytic ATP production and pH regulation will have to
be added. The model of carbon flux distribution in central metabolism allows us to
investigate hypotheses on the apparent dysbalance of glucose and lactate uptake with
cerebral metabolic needs.
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5.1 Abstract

Background

The aerobic energy metabolism of cardiac muscle cells is of major importance for the
contractile function of the heart. Because energy metabolism is very heterogeneously
distributed in heart tissue, especially during coronary disease, a method to quantify
metabolic fluxes in small tissue samples is desirable. Taking tissue biopsies after infu-
sion of substrates labelled with stable carbon isotopes makes this possible in animal
experiments. However, the appreciable noise level in NMR spectra of extracted tissue
samples makes computational estimation of metabolic fluxes challenging and a good
method to define confidence regions was not yet available.

Results

Here we present a computational analysis method for nuclear magnetic resonance
(NMR) measurements of tricarboxylic acid (TCA) cycle metabolites. The method
was validated using measurements on extracts of single tissue biopsies taken from
porcine heart in vivo. Isotopic enrichment of glutamate was measured by NMR spec-
troscopy in tissue samples taken at a single time point after the timed infusion of
13C labelled substrates for the TCA cycle. The NMR intensities for glutamate were
analysed with a computational model describing carbon transitions in the TCA cycle
and carbon exchange with amino acids. The model dynamics depended on five flux
parameters, which were optimised to fit the NMR measurements. To determine con-
fidence regions for the estimated fluxes, we used the Metropolis-Hastings algorithm
for Markov chain Monte Carlo (MCMC) sampling to generate extensive ensembles of
feasible flux combinations that describe the data within measurement precision lim-
its. To validate our method, we compared myocardial oxygen consumption calculated
from the TCA cycle flux with in vivo blood gas measurements for 38 hearts under
several experimental conditions, e.g. during coronary artery narrowing.

Conclusions

Despite the appreciable NMR noise level, the oxygen consumption in the tissue
samples, estimated from the NMR spectra, correlates with blood-gas oxygen uptake
measurements for the whole heart. The MCMC method provides confidence regions
for the estimated metabolic fluxes in single cardiac biopsies, taking the quantified
measurement noise level and the nonlinear dependencies between parameters fully
into account
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5.2 Background

Metabolic fluxes in animal tissues can be identified by measuring the incorporation of
stable isotopes in intracellular metabolite pools. To quantify metabolic fluxes, isotope
label incorporation is usually measured at several time points [Sauer, 2006], among
others in heart tissue [Chance et al., 1983, Malloy et al., 1990, Schroeder et al., 2009].
Heterogeneity of metabolism inside the heart often confounds time series of small
tissue samples, therefore a single time point protocol to quantify metabolic fluxes has
been developed [van Beek et al., 1998, 1999]. Such single time point measurements in
individual samples allow to define spatial profiles of metabolic fluxes in heterogeneous
organs [Alders et al., 2007].

The incorporation of stable isotopes (e.g. *C') in metabolic intermediates can be
detected by nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry
(MS). The data is then analysed with computational methods that require (i) detailed
mathematical models of carbon transitions between the metabolites in the system and
(ii) sophisticated optimisation procedures for estimating the flux parameters. In the
past, we have developed a bioinformatics method to estimate metabolic fluxes in
aerobic metabolism from very noisy NMR measurements resulting from the Labelling
with Isotope for a Pre-Steady-State Snapshot (LIPSSS) protocol [Binsl et al., 2010a].
For LIPSSS, isotope labelled substrate for a metabolic pathway is infused for a short,
definite period of time, and the metabolism is stopped before a steady state of label
incorporation is reached. Finally, pathway metabolites are extracted and measured.
Although the original computational analysis method [Binsl et al., 2010a] explores
parameter space extensively to avoid local minima, only a rough estimate of parameter
confidence regions was obtained by assuming local linearity. Here we introduce a
Markov chain Monte Carlo (MCMC) parameter estimation strategy which allows a
full description of the confidence regions of the estimated metabolic fluxes, including
correlations and nonlinear dependencies between parameter estimates.

Brown et al. [Brown et al., 2004] and Gutenkunst et al. [Gutenkunst et al., 2007a]
sampled ensembles of parameter sets for systems biology models with MCMC. Cor-
relations between model parameters were taken into account and confidence bounds
for parameters and model predictions were defined [Brown et al., 2004, Gutenkunst
et al., 2007a]. Monte Carlo methods have previously been applied to metabolic flux
analysis (MFA) in order to handle inaccuracies in data and model [Schellenberger and
Palsson, 2009]. Sensitivity analysis by Monte Carlo sampling is also implemented in
a 13C MFA analysis software package [Weitzel et al., 2012]. In 3C MFA, MCMC
sampling has been used for uncertainty analysis [Kadirkamanathan et al., 2006, Quek
et al., 2009], for flux estimation with noisy data [Yang et al., 2005], and for in silico ex-
perimental design to determine optimal substrate labelling protocols [Schellenberger
et al., 2012]. Antoniewicz et al. proposed a different approach of determining confid-
ence bounds on fluxes by calculating the agreement between model and experiment
data as a function of the flux of interest [Antoniewicz et al., 2006].

We developed and applied an MCMC procedure to estimate the TCA cycle flux,
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carbon substrate uptake, and oxygen consumption from NMR spectra of 3C en-
riched glutamate sampled at a single time point. For the computational analysis, we
expanded the R-package FluxEs [Binsl et al., 2010a]. This analysis was applied to
cardiac tissue biopsies flash-frozen 5.5 minutes following 2C' acetate infusion in por-
cine hearts in vivo. The method was validated experimentally for a range of cardiac
stress conditions. Our first goal was therefore to determine the uncertainty in the
estimation of metabolic flux parameters based on the quantified uncertainty in the
NMR measurements and in the prior knowledge. The second goal was to validate the
computational estimations in experiments in vivo.

5.3 Methods

5.3.1 Ethical Statement

The study was approved by the Advisory Board for the Use of Experimental Animals
of the Vrije Universiteit Amsterdam. The procedure is in accordance with the Amer-
ican Physiological Society ‘Guiding Principles in the Care and Use of Animals’, which
state that muscle relaxants may be used in conjunction with drugs known to produce
adequate anaesthesia.

5.3.2 Experimental Strategy

In this study the metabolic flux in the TCA cycle was measured in tissue biopsies
taken from cardiac tissue via the LIPSSS experimental protocol which consists of a
brief, timed infusion of *C labelled acetate in the left anterior descending (LAD)
coronary artery of anaesthetized pigs [Alders et al., 2004]. We began with unlabelled
acetate which was infused for 30 minutes, in order to establish a stationary metabolic
state, followed by [2-13C] acetate for 4 minutes and [1,2-13C] acetate for 1.5 minutes.
After exactly 5.5 minutes of 1>C enriched acetate infusion, metabolism was arrested by
freeze-clamping part of the left ventricular wall of the heart before the isotopic steady
state was reached. Biopsies from different regions of this part of the left ventricular
wall were cut from the tissue slab after freeze-drying, and divided into approximately
nine samples per heart with around 0.1 g dry mass per sample. After extraction
with perchloric acid, the '*C’' NMR multiplets of glutamate were measured. '2C-
NMR spectra were obtained at 100.62 MHz and analysed with the MRUI/AMARES
software package (more information about tissue preparation, NMR, measurement and
the package can be found in reference [Alders et al., 2004]).

Up to nine separate multiplet intensities were detected for glutamate. For inde-
pendent testing of the LIPSSS method and the associated parameter estimation pro-
cedures, ‘gold standard’ myocardial oxygen uptake was calculated from blood flow,
hemoglobin content and blood-gas measurements taken before and during acetate in-
fusion [Alders et al., 2004]. Note that these classic oxygen uptake measurements are
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entirely independent of the LIPSSS method. We analysed data from LIPSSS samples
taken from N = 38 porcine hearts divided into 6 different experimental groups: (i)
basal state of the heart (control group, n = 7), two groups with constriction (see be-
low for method) of the coronary vessels to reduce blood flow ((ii) mild stenosis group,
n = 7 and (ili) a moderate stenosis group, n = 6), (iv) peripheral venous infusion
of dobutamine to induce cardiac stress (dobutamine group, n = 6) or (v) infusion of
adenosine for cardiovascular dilatation (adenosine group, n = 4) and (vi) finally, a
combination of stenosis and adenosine administration (stenosis + adenosine group, n
= 8). In the mild and moderate stenosis groups, LAD blood pressure was adjusted
with an occluder to amount to about 70 and 35 mmHg downstream of the occluder,
respectively. In the adenosine and stenosis + adenosine groups, adenosine was infused
into the LAD at a rate of 100 pg/kg/min. In the stenosis + adenosine group coronary
blood pressure was reduced to about 45 mmHg. In the dobutamine group, dobutam-
ine was infused at a rate of 10 ug/kg/min. Note that the dobutamine group initially
contained 8 hearts from which two were excluded from further analysis, due to a low
mean arterial blood pressure and insufficient NMR signal for parameter estimation
(see [Binsl et al., 2010a]), respectively.

5.3.3 Anaesthesia and animal experimental procedures

In all groups, sedation was performed with ketamine 15 mg/kg and midazolam 1
mg/kg intramuscularly, and anaesthesia was maintained by continuous infusion of
sufentanil (4 pg/kg/hr), midazolam (0.5 mg/kg/hr), and pancuronium (0.2 mg/kg/hr).
The trachea was intubated and the lungs were ventilated with a mixture of 60% oxy-
gen/40% air. Fluid-filled catheters were introduced and hemodynamic parameters
collected as previously described (see [Alders et al., 2004]). A continuous infusion of
lidocaine was started to help prevent cardiac arrhythmias (9 mg/kg/hr, with an initial
bolus injection of 50 mg). Five cm HoO of positive end-expiratory pressure (PEEP)
was applied before opening the thorax. The thorax was opened via a mid-sternal
incision and the heart exposed by opening the pericardium. The left hemiazygos vein
was tied off to prevent mixing of noncoronary venous blood with coronary venous
blood. The LAD was dissected free over a distance of about 2 ¢cm and was cath-
eterised with a 24G catheter. In the stenosis and adenosine + stenosis groups, a
custom-made adjustable aluminium occluder was placed around the artery, and LAD
pressure was measured.

After finishing instrumentation the animal was allowed to stabilise for at least 15
minutes, the first batch of microspheres (labelled with 4'Ce or 193 Ru, in random
order) was injected into the left atrium for baseline blood flow measurements. The
intervention was performed and 30 minutes later a second batch of microspheres was
injected for final blood flow measurements. Throughout the procedure hemodynamic
data were recorded continuously.

Experimental procedures have been described more extensively previously [Alders
et al., 2007, 2004].
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Figure 5.1: Computational model of carbon transitions in the TCA cycle. The numbered circles
connected in a string represent single carbon atoms of the corresponding metabolite. Fluxes between
carbon atoms of the metabolite pools are indicated by arrows. Blue and red dotted arrows stand
for carbon atoms entering and leaving the system, respectively. Green dashed arrows indicate bi-
directional exchange fluxes of carbon atoms with amino acids. The parameters determining the
conversion rate are shown next to the arrows. Note that there are two possible transitions between
a-ketoglutarate and succinate, indicated by arrows of different grey shade. The figure was adapted
from Binsl et al. [Binsl et al., 2010a].

5.3.4 Computational Model

The NMR measured enrichment of glutamate with isotopes was analysed with a com-
putational model. The model of carbon transitions in the TCA cycle used in this
study was described previously in detail [van Beek et al., 1998, 1999, Binsl et al.,
2010a] and is therefore only described here in brief. The model contains ten meta-
bolite pools, consisting of metabolites which contain two to six carbon atoms, and 50
transitions of carbon atoms between the metabolites (Figure 5.1).

Isotopically labelled substrate enters the system via the acetate pool. Acetate
is then converted into acetyl coenzyme A (acetyl-CoA), which then enters the TCA
cycle. Since acetyl-CoA can also be formed from endogenous unlabelled substrates
such as glucose, glycogen, or fatty acids, a diluting pool was introduced to account
for dilution of the labelled acetate. The intermediates of the TCA cycle are rep-
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resented by the 6-carbon metabolite pool labelled as citrate (which also comprises
cis-aconitate and isocitrate), a-ketoglutarate, succinate (including succinyl-CoA) and
oxaloacetate (representing a 4-carbon metabolite pool which also comprises malate
and fumarate). Glutamate and aspartate are amino acids synthesised by transamina-
tion from a-ketoglutarate and oxaloacetate, respectively. The replenishment of TCA
cycle intermediates was modelled by an anaplerotic influx connected to succinate.
Malloy et al. have given detailed descriptions of the equations for anaplerosis [Malloy
et al., 1990, 1996]. The metabolite concentrations were given as fixed parameters in
the calculations: the glutamate pool size was measured by biochemical assay in each
sample [18], because sensitivity analysis showed that results are sensitive to its value.
However, the same sensitivity analysis showed that the metabolite pool concentrations
of citrate, a-ketoglutarate, oxaloacetate and aspartate had little effect on the results
and these concentrations were taken from previous studies [van Beek et al., 1999,
Alders et al., 2004]. All metabolite concentration parameters were therefore fixed and
all flux parameters estimated during the Markov chain Monte Carlo procedure (see
below). More information about the model and a listing of all model equations can
be found in the online supplemental material®.

The dynamic behaviour of the model is affected by five system parameters (Fig-
ure 5.1). The flux parameters Jrca and Jegzen, were expressed in pymol/(min*g dry
weight [dw]) and represent reaction fluxes through the TCA cycle and exchange re-
actions with amino acids, respectively. The dynamics of incorporation of 3C' label
from acetate into the acetyl-CoA pool depends on transport in the blood vessels, per-
meation of the cell membrane, the flux of the conversion of acetate into acetyl-CoA,
the flux of acetyl-CoA into the TCA cycle and the acetate and acetyl-CoA pool sizes.
Fortunately, the time course of incorporation of '3C label into the acetate pool is
almost mono-exponential [Randle et al., 1970] and can be represented by a single
time constant which we term Ty.qns. We incorporated this efficient way to represent
acetyl-CoA dynamics into our model [van Beek et al., 1999]. The two parameters
Pgip and P,y account for the degree of dilution of labelled acetate and the rate of
anaplerosis relative to TCA cycle flux, respectively. Both are flux parameters which
are expressed as fractions of Jroa. Jroa and Py describe energy and substrate
turnover which are our targets to measure and are therefore labelled ‘primary para-
meters’. On the other hand, Jegen, Tirans and Pgpqp are constrained during parameter
estimation by Bayesian priors (see below) and because they are not our primary tar-
get parameters they are termed ‘auxiliary parameters’ which are allowed to vary to
determine the uncertainty which they cause in the primary parameters, The LIPSSS
estimate for myocardial oxygen consumption is calculated from the primary para-
meters, (see Equation 5.5 below). Note that primary and auxiliary parameters are
estimated together in the same procedure.

Ihttp://www.biomedcentral.com/1752-0509/7/82/additional
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5.3.5 Matching model simulations to NMR measurements

The computational model described above accounts for all possible carbon isotope
labelling states (isotopomers) of each of the metabolites. The system is described by
132 ordinary differential equations (ODEs) to calculate the rate of change of each iso-
topomer over time. For instance, the metabolite glutamate, which contains 5 carbons,
is represented by 2° = 32 ODEs. The isotopomer composition is expressed as fractions
of the metabolite concentration of the corresponding pool. Thus, at each time point,
the sum of all isotopomer fractions in a pool is 1. All ODEs are then integrated over
time to yield the simulated isotopomer fractions. For comparison with the *C NMR
measurements (Megp), simulated NMR multiplet intensities (mg;,,) were calculated
from the simulated isotopomer fractions for the time point at which the sample was
taken in the experiment [Binsl et al., 2010a]. To this end all isotopomers contributing
to a particular NMR intensity were added. The simulated multiplet intensities are
dependent on the values of the five model parameters. To quantify the agreement
between model simulation and experimental data we define a least-squares cost func-
tion C' as a function of the parameter vector #, in which the squared residuals for
all multiplets are weighted by their standard deviations and summed. Additionally,
we include Bayesian prior terms in the cost function which reflect prior knowledge on
auxiliary parameter values (see below):

co) = % Z (mi’sm — mi’ewp>2 + me’or(Gj) (5.1)

i€multiplets Té,exp jEeo

The 0 czp represents the measurement error of the NMR intensity. This cost
function is used for the optimisation procedures. It is also used as the argument
of the normal probability distribution used for the MCMC procedure (see below).
The cost function integrates data measured directly in the experiment with literature
information incorporated in the priors on parameter values.

5.3.6 Priors on parameter values

The main objective of this study was to estimate Jrca and Py, the two primary
parameters which define aerobic and substrate metabolism and allow the calculation
of oxygen consumption in the sample immediately before metabolic arrest. The three
remaining parameters Tirans, Panap, and Jezep are not our target parameters and
cannot be determined with great precision. However, these auxiliary parameters are
taken into account to evaluate their effect on the estimation of the primary parameters.
To improve the estimation and to help avoid local minima in parameter space with
physiologically implausible values of the auxiliary parameters, a priori information for
such parameters (6;) can be directly entered into the cost function by adding a prior
term to the cost function in Equation 5.1 for the deviation from a certain reference
value 0
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1 /In; — Inf*\?>
prior(0;) = = (nnl) (5.2)

Oing

where 07,9 is the standard deviation for the auxiliary parameter in log-space. The
advantage of logarithmic parameters is that the parameter values with a Gaussian
prior distribution are positive and dimensionless. Note that the prior probability in
Equation 5.2 does not include the normalisation factor for the log-normal distribution

of a\}ﬁ' Normalisation was not necessary because our method applied the Metropolis-

Hastings algorithm which uses the ratios of probabilities. In previous studies, the
value of Tirqns had been estimated to be 0.202 min which is compatible with the
time constant of the enrichment of acetyl-CoA with radioactive label [van Beek et al.,
1999, Binsl et al., 2010a]. We constrain Ti,.qns around this prior value with oy, set
to 0.336, a high value used in a previous study for unreported experimental errors
[Hettling and van Beek, 2011]. This is slightly higher than the value for the standard
deviation of these parameters determined in simulations by Binsl et al. [Binsl et al.,
2010a]. The central 95% region of the prior for Tiyqns lies between 0.202/1.96 and
0.202 *1.96 min, since oj,9 = 0.336 = 1/4 % (In(6; x 1.96) — In(6;/1.96)), (see [Hettling
and van Beek, 2011]).

The accurate quantification of the exchange flux Je,.;, between a-amino and a-keto
acids was found to be challenging [Chance et al., 1983, Jeffrey et al., 1999]. A previous
analysis of the model used in this study revealed a low sensitivity of estimations of
Jrca to variations of Jeyen in the physiological range from pmol/(min x gdw) [van
Beek et al., 1999]. Reported values of exchange flux in the literature vary substantially.
Some report high values for the exchange flux (e.g. 13-fold the flux of Jrca [Randle
et al., 1970]). Several other studies report Je.cn to be approximately equal to Jrca
[Nuutinen et al., 1981, Yu et al., 1995]. To address this issue, we set a prior on
Jezcn relative to the value of Jroa. Instead of calculating the prior cost directly from
Jexeh, it is therefore determined by entering the ratio 8; = Jeyen/Jrca into Equation
5.2. The reference value 8} for the ratio is set to 1, based on values for Jeyen/Jrca
reported by Nuutinen et al. [Nuutinen et al., 1981] and Yu et al. [Yu et al., 1995].

Because of the large spread of values found in the literature (see above), we as-
sumed a high standard deviation for the ratio Jegzcn/Jrca and set op,g to 1/4%(In(6;i%
15) — In(6;/15)) = 1.345, with 6; = 1. It is thereby ensured that Jegp, lies with 95%
probability between Jrca/15 and Jroa * 15.

For the parameter Py,qp, the anaplerotic flux relative to the TCA cycle flux, most
of the values found in literature were smaller than 1 and the highest experimental
value found was reported to be 1+ 0.3 [Weiss et al., 1989, Lloyd et al., 2004]. Hence
the prior cost for P,,q, was set to be uniform for values of P4, between 0 and 1
combined with a half-normal distribution which had a standard deviation of 0.3 taken
from Lloyd et al. [Lloyd et al., 2004] for the values above 1:
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Figure 5.2: Posterior distributions for the parameter ensemble (corresponding to 35000 parameter
sets) for one tissue sample of the control group. The probability density functions of the priors
for the auxiliary parameters Jegen, Ttrans and Panap are plotted with solid lines. On top of each
plot, ensemble mean, standard deviation, median & and best fit value are reported. Note that the
probability density functions are scaled to the observed frequencies on the histogram.

—In(cl 0< Popay < 1
prior(Panap) = n(cl), - P = (5.3)
—In(N(p=1,0=0.3)%c2), Papap >1
with ¢l = 1 — 054_0%51 and ¢2 = ﬁ. The normalisation constants cl
7 V2re2 7 V2re2

and ¢2 ensure that the probability density function of the prior is continuous and
that its integral is equal to one. N denotes the normal distribution. The probability
density functions for prior(T;rans), prior(Jegen ), and prior(Pgynaqp) are shown in Figure
5.2 (solid lines).

5.3.7 Parameter estimation and sampling of parameter en-
sembles

In biological models, usually many different combinations of parameters can describe
the experimental data [Gutenkunst et al., 2007a]. To address this, we decided to
not merely rely on a single best-fit of the model parameters to the NMR, data for
fixed values of the auxiliary parameters, but instead, we systematically generated
ensembles of model parameters that fit the data with reasonable precision. This
approach clarifies how well the primary parameters are defined by the data despite
uncertainty in the NMR intensities and auxiliary parameters. Through the use of an
MCMC approach, confidence bounds can be set on the estimated parameter values.
Sampling is based on Bayesian inference of a posterior parameter distribution

Pr(0|D) = Pr(D|0) = Pr(6) (5.4)

where Pr(D|0) is the probability of a parameter vector 6 to describe the given data
D and Pr(0) is the prior probability of the parameters (see above). The right-hand
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side of Equation 5.4 is equal to e~¢(?) where the cost function of Equation 5.1 (which
includes the priors of Equations 5.2 and 5.4) is used. The probability functions were
not all normalised because this was not necessary for the MCMC procedure which
relies on the ratios of probabilities rather than absolute values. Note that the cost
function (Equations 5.1, 5.2, 5.3) forms the basis of a probability function (Equation
5.4) that defined the ensemble of estimated parameter values.

In order to estimate the model parameters and to quantify the uncertainty of the
estimated values, we sampled an ensemble of parameter sets which could describe
the available NMR data by performing a random walk through the parameter space
through the application of the Metropolis-Hastings algorithm. The starting point of
the random walk was an optimised set of parameters, which had been obtained by a
grid optimisation strategy introduced by Binsl et al. [Binsl et al., 2010a]. The grid
optimisation was designed to cope with a shallow basin shaped by the cost function
in order to avoid optimisation towards local minima. The procedure covered the
5-dimensional parameter space by a grid so as to find the best starting point for
optimisation. The second phase of optimisation starting at this grid point was then
performed using the Nelder & Mead simplex algorithm, and in the third phase we
used the Metropolis-Hastings algorithm to sample a parameter ensemble with its
probability density proportional to a probability function based on the cost function
C(0) of Equation 5.1 entered in Equation 5.4.

5.3.8 Quality criteria for flux estimations in NMR samples

In many of the available in vivo samples, NMR peak intensities are low and often
below the threshold of observability, i.e. often six or seven of the nine multiplets
of glutamate are not discernible from noise and were assigned an intensity of zero.
In some of these low intensity samples, Monte Carlo sampling leads to very large
ensemble standard deviations of the estimated primary parameters. We excluded
such samples which did not yield reliable estimates for Jrc 4. The exclusion criterion
was that the standard deviation of Jrc 4 in the posterior parameter ensemble exceeded
10 pmol /(min * gdw).

5.3.9 Software package FluxEs

The analysis was performed using the R package FluxEs introduced by Binsl et al.
[Binsl et al., 2010a]. In order to process parameter ensembles, a Monte Carlo module
was added to the software. This module uses the AMCMC algorithm implemented
within the package spBayes [Rosenthal, 2007, Finley et al., 2007]. The AMCMC
algorithm is a Metropolis-Hastings variant which automatically adapts the proposal
step size for the sampled parameters in the random walk. This leads to quicker
convergence to a posterior distribution. For the primary parameters, the time constant
of the autocorrelation function of the sampled ensemble was calculated in order to
inspect whether the algorithm converged to a stationary distribution. For samples
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with a high autocorrelation time in the primary parameters, we visually inspected the
parameter trace.

A single model simulation run takes approximately 0.26 seconds on a computer
with 2.26 GHz clock frequency. The grid optimisation for a single sample took on
average 115 minutes, the subsequent sampling with the adaptive Metropolis-Hastings
algorithm took on average 540 minutes per sample.

The calculations for all samples were performed in parallel on the Lisa computer
cluster system at SARA Computing and Networking Services (http://www.sara.nl).
All code required for the analysis and part of the experimental data can be found in
the online supplemental material.

5.4 Results

5.4.1 Monte-Carlo sampling

We estimated the TCA cycle flux from the NMR, peaks of glutamate for 347 tissue
samples from 38 hearts. Applying the exclusion criterion described above we removed
85 low-quality samples - leaving 262 samples for further analysis. For each sample,
an ensemble of 35,000 parameter sets was generated with the Metropolis-Hastings
algorithm. Although convergence was not the first criterion for sample rejection, all
ensemble estimates with a high autocorrelation time constant were rejected according
to the quality criterion.

An example of a parameter ensemble for one single sample of the control group is
given in Figure 5.2. For Trans, Jewch, and Pypqp, the probability density functions of
the prior distributions are plotted together with the histograms of the posterior distri-
butions. The posterior distributions for these auxiliary parameters are very broad and
relatively close to their corresponding prior distributions. In this way the MCMC en-
semble method allowed defining the uncertainty in the primary parameters taking into
account the large spread in auxiliary parameters. Despite the broad distribution of
the auxiliary parameters, the estimates for Jrca and Py form relatively well-defined
peaks and their standard deviations are relatively low.

For the primary parameters we can thus provide point estimates for each sample.
To determine which measure best reflects the true value of a parameter, we con-
ducted a simulation experiment in which multiple sets of artificial NMR multiplets
were generated by model simulation and subsequent addition of Gaussian random
measurement noise. The parameters were then re-estimated and we compared the
estimates from the best fit after grid optimisation (i.e. the fit with the lowest cost
function value and therefore the highest likelihood, see Equation 5.4) and the mean,
median, and mode of the Monte Carlo ensemble with the ‘true’ parameter values from
the initial simulation. Regarding the primary parameters, the best fit gave the most
reliable point estimate. Below, we therefore report the best fit values for the primary
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parameters.

5.4.2 Validation by estimation of myocardial oxygen consump-
tion

In order to validate our flux estimation method we compared the LIPSSS estimated
myocardial oxygen consumption (MVOg, expressed in pmol/(min * gdw)) with in-
dependent ‘gold standard’ measurements. The ‘gold standard’ was determined by
blood-gas oxygen and blood flow measurements and the LIPSSS estimated oxygen
consumption was calculated from the parameter estimates of the model [Alders et al.,
2004]. The MV O, for a single sample is determined from the primary LIPSSS flux
parameters by stoichiometric biochemical relations and can be calculated as follows
[Binsl et al., 2010a, Chatham et al., 1995]:

MV O™ — (2 4 Pyyt) % Jroa (5.5)

The MV Os determined from blood-gas measurements reflects the oxygen con-
sumption of the entire heart. When averaging the samples taken for LIPSSS measure-
ments to estimate oxygen consumption for the entire heart ( MV Ok ) individual
sample sizes were taken into account. As in Binsl et al., the contributions of the
individual samples were weighted by the dry weight w®*™P!¢ for each sample [Binsl
et al., 2010a]].

S ws e s MV O30

heart __
MV02 - Z sample

(5.6)

For all six experimental groups, the comparison of MV O, estimated with the
LIPSSS method (from the model parameters Py; and Jroa) with the ‘gold standard’
oxygen measurements is shown in Figure 5.3. One heart from the stenosis + adenosine
group was excluded from the analysis since none of its samples satisfied the quality
criterion.

For all groups, LIPSSS MV O, correlated with blood-gas MV O4 relatively well.
For the control group oxygen consumption measured by the two methods correspon-
ded, but for the ischaemic conditions (stenosis with and without adenosine), oxygen
consumption tended to be lower for the LIPSSS method. We calculated Pearson cor-
relation coefficients of 0.49 for control (n = 7, p = 0.26), 0.69 for mild stenosis (n
=17, p = 0.09), 0.66 for moderate stenosis (n = 6, p = 0.15), 0.99 for dobutamine
(n = 6, p = 0.0003), 0.71 for adenosine (n = 4, p = 0.29), and 0.87 for the stenosis
+ adenosine group (n = 7, p = 0.01). The Pearson correlation for all groups com-
bined was 0.85 (n = 37, p < 107!°). The dobutamine group showed higher oxygen
consumption than the other groups reflecting the increased cardiac work load. It is
important to note that the small tissue biopsies used in the LIPSSS experiment only
covered a relatively small cardiac region, in contrast to the physiological blood-gas



110 CHAPTER 5. COMPUTATIONAL TCA CYCLE FLUX ESTIMATION

l; o | ® Control
5 O Mild Stenosis
2 @ Moderate Stenosis
c o | B Dobutamine
g © B Adenosine
~ @ Stenosis + Adenosine
©
E B8
3.
£
c
o g
B T
= o
? o +
s ° y;
o
N -g 4
O o | 1
g —
© Y i
E o i e
o = § o)
) % 5
n'd o o)
= o
pd
T T T T T T T T
0 10 20 30 40 50 60 70

blood gas O, consumption in wmol - (min - gdw) ™

Figure 5.3: ’Gold standard’ oxygen consumption (z-azis) calculated from blood gas and blood flow
measurements versus oxygen consumption calculated from the parameter estimates derived with the
LIPSSS method (y- azis). Each data point corresponds to one heart. The line of identity is plotted
in black. Error bars correspond to the standard error of the mean of the oxygen consumption based
on NMR measurements over all samples taken from one heart. Note that the error for blood-gas
measurements using radioactive microspheres to measure local blood flow is estimated to be about
9% accounting for measurement error, spatial and temporal variation.
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Figure 5.4: Estimates for the primary model parameters for all experimental groups. Jrca and
Py, denote the overall TCA cycle flux and the dilution fraction of labelled acetate entering the TCA
cycle due to unlabelled endogenous substrates such as glucose and fatty acids, respectively. Estimates
were first averaged for each heart and then all hearts were averaged for each group. The error bars
represent the standard error of the mean (SEM) of the estimates of all hearts in one experimental
group.

measurements which covered the entire left ventricle. Furthermore, the estimation of
MV Oy from the parameters of the TCA cycle model only reflects myocardial oxygen
consumption linked to the TCA cycle flux, disregarding other oxygen consuming re-
actions which were covered by the blood-gas measurements. The oxygen consumption
measurements in a small ischaemic region dependent on a constricted coronary artery
would be very difficult to obtain with classic blood-gas measurements.

5.4.3 Estimation of TCA cycle fluxes

LIPSSS-based estimates for the primary model parameters under all experimental
conditions are shown in Figure 5.4. Estimates for Jrc 4 in the control group averaged
7.04 £ 0.79 (mean + SEM) pmol/(min * gdw). For mild and moderate constric-
tion of the coronary vessels, we estimated Jrca to be 4.12 4+ 0.49 and 2.99 + 0.36
umol /(min * gdw), respectively.

Dobutamine infusion, which stimulates cardiac contraction, leads to a high average
Jrca estimate of 11.18 £+ 1.31 pmol/(min x gdw) of tissue. Estimations for the
adenosine group show no difference with the control condition. The TCA cycle flux in
the stenosis 4+ adenosine group is in between the mild and moderate stenosis condition.
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The relative contribution to the TCA cycle flux of substrates other than labelled
acetate, i.e. Py is higher in all experimental groups compared with the baseline
condition (see Figure 5.4). Low fractional acetate usage, i.e. high dilution has been
previously documented in experiments with dobutamine [Robitaille et al., 1993].

The estimations of T.qns for all the groups did not differ substantially from the
prior value of 0.202 minutes (data not shown). Ensembles for the auxiliary parameters
Jezeh and Pyyqp show large standard deviations. This indicates that these parameters
cannot be estimated properly from the NMR data. Indeed, the experimental protocol
was optimised to estimate the primary parameters, disregarding the auxiliary para-
meters. Nevertheless the effect of the potential spread in these auxiliary parameters
on the uncertainty limits of the primary parameters was taken into account. Es-
timations of the auxiliary model parameters are described in the supplemental text
(section 5.7).

5.5 Discussion

The fluxes of biochemical reactions linked to cardiac energy metabolism are of signi-
ficant interest. Here we investigated a computational method to quantify fluxes in the
TCA cycle using NMR data from '3C labelling experiments in porcine hearts. We
took measurement error in the data and uncertainty of model parameters directly into
account. To test the method, distinct 13C labelling patterns (isotopomers) in glutam-
ate were measured under six different cardiac stress and control conditions. The data
were analysed with a detailed model of carbon transitions in the TCA cycle and two
primary flux parameters of interest (reflecting total aerobic metabolism and uptake of
the labelled substrate) were estimated. Possible variation in three auxiliary paramet-
ers, taken from experimental literature was included in the application of Bayesian
priors. To define the uncertainty in estimated flux parameters from measurement
error and uncertainty in prior knowledge, we used an MCMC method. As a result,
we were able to derive estimates for the TCA cycle fluxes under various experimental
conditions despite the high noise level in the available NMR data. For validation, we
compared blood-gas measurements of myocardial oxygen consumption with oxygen
consumption calculated from our own parameter estimates. The oxygen consumption
estimated with our model correlated with the classic physiological measurements for
the whole heart (Figure 5.3).

However, because the LIPSSS parameter estimates relied on small samples ob-
tained from the heart while the blood gas measurements represented the oxygen con-
sumption for the whole heart, the LIPSSS estimates are expected to deviate from the
whole heart measurement. The deviation may have a random component because
of the limited tissue sample size, and a systematic component because of functional
differences between regions in the heart. The random component is expected be-
cause heterogeneity of blood flow and metabolism has been measured in heart muscle
[Alders et al., 2004, Weiss and Sinha, 1978]. A systematic component is expected
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especially in the stenosis groups, because the LIPSSS NMR measurements are taken
from regions with lower oxygen consumption caused by low perfusion. However, it
should be noted that this reasoning is incomplete because the blood gas estimation
of oxygen consumption takes the local blood flow measured in the stenosed region
into account. Nevertheless, systematic differences between the small region and the
average for the whole heart may contribute to the deviation from the line of identity
(see Figure 5.3) at low oxygen consumptions.

Additional physiological measurements of oxygen consumption and metabolic fluxes,
independent from the stable isotope labelling experiments, are desirable for further
validation of our method. Regional rates of oxygen consumption can be measured
by measuring oxygen content in small veins [Weiss and Sinha, 1978] with a spectro-
scopical method in frozen tissue. The latter method is difficult and its validation has
been criticised. A further method is the simultaneous determination of myocardial
perfusion and oxygen content in small regions of the heart [Reeder et al., 1999]. Oxy-
gen consumption can also be measured using positron emission tomography (PET)
and TCA cycle fluxes using in vivo NMR (e.g. [Kofoed et al., 2000]). However, these
methods mostly have very limited spatial resolution [Reeder et al., 1999] and were in
turn subject to rather limited validation themselves. The difficulty in measuring local
energy metabolic flux provided motivation to develop our present method in the first
place. Despite the limited possibilities, further validation of the LIPSSS method in
the future is desirable.

Part of the dataset used here, namely the control and dobutamine group, had
been analysed in a previous study [Binsl et al., 2010a]. The estimates of Binsl et al.
relied on prior information on the model parameters Ty qns and Pypqp. The latter
parameter, describing anaplerosis relative to the TCA cycle flux was constrained to 6
+ 3% of Jrca, based on information from literature studies on isolated hearts. The
latter studies however, only accounted for anaplerosis from either propionate [Martini
et al., 2003] or from pyruvate [Panchal et al., 2000, 2001]. It has been suggested that
relative anaplerosis is often underestimated by conventional approaches, including
isotopomer analysis or fractional enrichments of carbons in glutamate [Cohen and
Bergman, 1997]. Tracer experiments also exist using !3C labelled propionate that
report the relative anaplerotic flux in rat hearts to be much higher than 6%, e.g. 16%
[Kasumov et al., 2007] or 29% [Malloy et al., 1996]. Higher relative anaplerotic fluxes
were reported during low flow ischaemia, reaching 100% [Lloyd et al., 2004] and 35%
[Weiss et al., 1989]. Higher values have also been reported for hypertrophy [Sorokina
et al., 2007]. Although our estimates for the parameter Py, in the present study have
a relatively low precision, they suggest the possibility that in porcine heart anaplerotic
flux in vivo is relatively high in contrast to low values often found in isolated hearts
(see section 5.7).

Since three different stenosis conditions were included in the present study, we
chose a less constraining Bayesian prior on the parameter P, which covered a broad
range. It is important to note that the Bayesian priors were the same for the analysis
of NMR data from all experimental conditions. Despite the use of different choices of
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priors on the parameters, and although a higher anaplerotic flux was estimated (see
chapter 5.7), our present estimates for fluxes in the control and dobutamine groups
did not differ much from the previous estimates of Binsl et al. [Binsl et al., 2010a).
Our estimates for cardiac ischaemia induced by coronary stenosis show that the TCA
cycle flux decreases whilst the relative anaplerosis increases (see Figure 5.4 and 5.7)
which is compatible with existing literature (see references cited above).

Due to the high velocity of the exchange reactions between a-amino and a-keto
acids, the determination of J..., using tracer experiments is expected to be practically
infeasible [Jeffrey et al., 1999]. Because of the uncertainty on Jezcn, we decided to
evaluate the effect of variation in Jeyen. Values for Jozen/Jroa found in literature
vary between 0.2 and 13 [Randle et al., 1970, Jeffrey et al., 1999], but are often around
1 in the heart [Yu et al., 1995], in contrast to the very high Jeycn/Jrca reported for
the human brain [Mason et al., 1995]. Initial estimations of Jecp in our data showed
that, particularly in samples with low NMR peak intensity, the simulated isotope
enrichment was not very sensitive to Jeycn. Rather than constraining Je,.n, around
an absolute value, we chose to set a Bayesian prior relative to Jrca. The standard
deviation of the prior was set to a very high value, reflecting the high variability
of Jewen/Jrca measurements found in the literature. Jezen/Jroa estimated with
our method ranged from 0.74 (median dobutamine group) to 1.75 (median control
group). Weiss et al. reported a decreased absolute exchange flux compared with
control conditions during post-ischaemic reperfusion in rat hearts [Weiss et al., 1993].
A decrease in Jeue, during stenosis was estimated in the present study (see chapter
5.7).

Literature information on parameter values was incorporated into the analysis as
Bayesian priors because of the high noise level in the NMR data. Without using
prior information, flux parameters sometimes reach physiologically infeasible regions
in parameter space. We investigated the sensitivity of our estimates of the primary
parameters to the priors for the auxiliary parameters by re-performing the analysis
with doubled prior standard deviations in equations 5.2 and 5.3. The estimate for
parameter Pg; is rather insensitive to changes in the prior standard deviation (abso-
lute difference in the estimated value averaged over all groups is 4.4 + 4.0%) while
estimates of Jprc4 are more sensitive to alterations in the priors on auxiliary para-
meters (average absolute difference 20 + 21%). Especially in the moderate stenosis
group, for which the NMR signals are on average very low, many estimates fail to
meet the quality criteria if the standard deviation for all three priors simultaneously
was made twice as large. This shows that the estimate of Jrcoa is sensitive to the
prior. However, Bayesian priors are necessary to constrain the estimates within reas-
onable ranges. It is therefore important to emphasise that the prior values and their
standard deviations are not arbitrarily chosen. The prior distributions of P4, and
Jexzch are based on experimental data [Randle et al., 1970, Nuutinen et al., 1981, Yu
et al., 1995, Weiss et al., 1989, Lloyd et al., 2004] and were given large standard devi-
ations. The prior on T,qns is based on previous estimates [van Beek et al., 1999, Binsl
et al., 2010a] and its standard deviation allows for a broad range. We therefore argue
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that although constraining parameters in this study was necessary due to the high
noise in the data, our framework still allowed to define reasonable point estimates
of flux parameters and additionally to define the variability in parameter estimates
taking reasonable, sometimes deliberately high, values for the uncertainty of auxiliary
parameters into account.

Parametric sensitivity analysis is commonly applied in systems biology [Perumal
and Gunawan, 2011]. In this investigation, we chose an approach that explored the
multidimensional space around a set of best-fit parameters using a random walk with
the Metropolis-Hastings algorithm [Brown et al., 2004, Gutenkunst et al., 2007a,
Hettling and van Beek, 2011]. The advantage of this method is that it takes into
account possible correlations and nonlinear dependencies between the model para-
meters. Antoniewiecz et al. approached the problem of defining confidence regions
for flux estimates by minimising a sum of squared residuals objective function as a
function of the flux value [Antoniewicz et al., 2006]. In their approach, the confidence
interval for a flux of interest is derived by setting the flux constant while optimising
all remaining fluxes in the system. This step is repeated for a range of fixed flux
values until the objective function value exceeds a predefined confidence limit. The
advantage of the MCMC approach to determine confidence regions is that it takes all
possible correlations between the fluxes into account, since no flux parameter is fixed
during the MCMC sampling.

The challenge in analysing the data in this study was the high noise level. Up
to seven of the nine measured multiplet intensities could sometimes not be detected.
Ensemble modelling proved to be a feasible method to separate samples with flux
parameters that could be estimated from samples with poor information on the fluxes
in the system. This ensemble approach made it possible to identify 262 out of 347
samples that gave useful estimates for the primary parameters. The quality selection
of the samples allowed us to use the best-fit parameters from each sample as a point
estimate for the primary parameters. The MCMC approach allowed us to define
confidence bounds on all estimated parameter values taking their correlations into
account. This is a significant advantage compared with previous approaches, where
linearised or analytical methods were used to calculate errors on estimated model
parameters [van Beek et al.; 1998, 1999, Binsl et al., 2010a].

Adding the Monte Carlo ensemble sampling to the LIPSSS framework enables
us to estimate the confidence regions of flux parameters in a single sample. The
small size of the tissue samples makes it feasible to identify the spatial variation
of flux parameters expected because of the known heterogeneity in the tissue. The
physiological meaning of our measurements of heterogeneity in metabolism in heart
muscle will be addressed in future studies.
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5.6 Conclusions

In this study we improved the LIPSSS method in order to quantify metabolic fluxes
using stable isotope labelling integrated with mathematical models of carbon trans-
itions: auxiliary information was taken into account in the form of Bayesian priors
and emphasis was placed on the uncertainty analysis of the estimated flux parameters.
The method was used to quantify TCA cycle fluxes from noisy NMR, measurements
in porcine hearts under different physiological conditions. Two important metabolic
fluxes could be determined in single biopsies taken during animal experiments and
confidence regions could be calculated for single samples.

5.7 Supplemental text: Estimation of auxiliary model
parameters

For the auxiliary model parameters Jeycn and Pypqp, accurate point estimates were
not expected (see above). Nevertheless, the uncertainty of the auxiliary parameters
was explicitly taken into account in the ensemble sampling. To give an impression of
the values and variation of these auxiliary parameters, Figure 5.5 shows box plots of
the distributions as a result of combining all valid parameter ensembles for all samples
per experimental condition.

Please note that these ‘grand ensembles’ aggregate the variability in the single
NMR measurements, the spatial variability between the different samples and the
variation amongst different hearts. The ’grand median’ of the combined distributions
for Pypap and Jegcn, and also the best-fit values averaged over all samples in all hearts
are given in Figure 5.5. Here we report the median of the ’grand ensemble’ rather
than the mean, because it is more robust when dealing with skewed distributions.
In the control hearts, anaplerosis has a median of the combined ensemble at 31%
of Jrca. This is higher than reported by Binsl et al. [Binsl et al., 2010a] (see
5.5). Relative anaplerosis tends to be increased under ischaemic conditions: for mild
stenosis, moderate stenosis, and the stenosis + adenosine groups, Py,qp becomes 39%,
71%, and 63% (grand median) of Jrc 4, respectively. These findings agree with studies
on perfused rat hearts which report a higher relative anaplerotic flux during ischaemia
[Lloyd et al., 2004]. The determination of the parameter J.,., using 13C' MFA is a
challenging task [Chance et al., 1983, Jeffrey et al., 1999]. As shown previously, the
NMR intensities are insensitive to high J..,., values and consequently J,.p values in
the high range cannot be defined accurately. Figure 5.5 presents a large number of
outliers for the estimates of J.;.n, with our ensemble method. For all stress conditions,
Jexzen 1s found to be lower compared with the control condition. This is corroborated
by a lower exchange flux from a-ketoglutarate to glutamate during dobutamine stress
previously reported for dog hearts [O’Donnell et al., 2004]. The ‘grand median’ Jezcp
for control and dobutamine group was 12.5 and 7.6 pmol/(min % gdw) which is in
agreement with previous estimates by Binsl et al. [Binsl et al., 2010a].
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Figure 5.5: Composite ensemble distributions for the auxiliary parameters Panap and Jegen Tepres-
enting relative anaplerosis and the exchange flux between TCA cycle intermediates and amino acids,
respectively. Colored bozes show the interquartile range of the distributions and their medians. The
ends of the whiskers stand for the lowest and highest value still within 1.5 times the interquart-
ile range of the lower and upper quartile, respectively. Best-fit parameter values averaged over all
samples and all hearts per group are plotted as open circles. Outliers are plotted with the symbol ‘x’.
Note that in the right hand plot outliers above 50 pmole/(min % gdw) have been omitted.
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6.1 Abstract

Predicting the distribution of metabolic fluxes in biochemical reaction networks using
Flux Balance Analysis (FBA) is of major interest in systems biology. Several data-
bases provide metabolic reconstructions for different organisms. These reconstructions
are curated and include genetic and biochemical literature information. Software to
analyse flux distributions exists, among others for the proprietary Matlab environ-
ment. Given the large user base of the R computing environment and the wealth of
analysis tools R provides, an implementation of flux analysis in R was desirable.

We developed the R software package BiGGR. which incorporates public meta-
bolic reconstruction databases, providing direct access to the BiGG database and the
reconstruction of human metabolism Recon2. Models can be assembled by querying
the databases for pathways, genes or reactions of interest. By linking to linear inverse
modelling algorithms, fluxes can be estimated, among others by optimising a cost func-
tion. BiGGR allows to estimate flux distributions by minimising differences between
experimental measurements and model predictions and can generate ensembles of
possible flux distributions. R analysis tools and newly written R functions are easily
mixed with the functionality provided by BiGGR. BiGGR automatically visualises
selected parts of metabolic networks using hypergraphs, with hyperedge widths pro-
portional to estimated flux intensity. BiGGR supports import and export of models
encoded in the Systems Biology Markup language (SBML) and is therefore inter-
operable with different modelling and analysis tools. Note that the BiGGR version
presented here is based upon a preliminary version introduced in section 4.8.1.

Availability

BiGGR is freely available via the Bioconductor repository at http://www.bioconductor.
org/packages/release/bioc/html/BiGGR.html.

6.2 Introduction

Metabolism directly reflects cellular functioning. If the biochemical reactions that
operate in a cell type are known along with uptake or release of some metabolites,
the distribution of metabolic flux in the metabolic system can often be predicted.
The reconstruction of the metabolic network of an organism is the starting point. In
recent years, genome-scale metabolic networks have been reconstructed for various or-
ganisms, such as microorganisms, animals and humans [Radrich et al., 2010]. BiGG
([Schellenberger et al., 2010]) is a knowledgebase of reconstructions of metabolism
consisting of large lists of metabolites and reactions for M. barkeri, S. cerevisiae, H.
pylori, E. coli, P. putida, M. tuberculosis and S. aureus. Recon 2 [Thiele et al., 2013]
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is presently the most comprehensive reconstruction of human metabolism. The re-
constructions recorded in these databases consist of genes, proteins, metabolites and
reactions that are connected with each other forming metabolic networks. Several
FBA software tools support import from databases [Lakshmanan et al., 2012]. The
free COBRA 2.0 toolbox allows to quantitatively predict cell metabolism from the
reconstructions in the BiGG database [Schellenberger et al., 2011], but requires the
commercial software package MATLAB. It is useful to have similar analysis tools
available in the open source R environment because this has a wide user base in stat-
istics and genomics. Recently two other R packages appeared for constrained based
modelling [Gelius-Dietrich et al., 2013, Gangadharan and Rohatgi, 2012]. However,
these packages have a different focus than BiGGR which is specifically designed for
automated model generation by querying metabolic reconstruction databases and the
visualisation of FBA results.

6.3 Software features

The R package BiGGR comprises the databases from BiGG [Schellenberger et al.,
2011] and the recent reconstruction of human metabolism Recon 2 [Thiele et al.,
2013] as SBML objects. Other metabolic reconstructions can be imported from e.g.
the BioModels database [Le Novere et al., 2006]. BiGGR provides functionality to
query the databases for specific pathways, reactions or genes and select subnetworks to
which FBA can be applied. FBA is conducted by converting a network into a linear
inverse model, which is then solved using linear programming algorithms initially
implemented for analysis of ecological models [Oevelen et al., 2009]. In addition to
model assembly and analysis, automatic visualisation of selected parts of metabolic
reconstructions and estimated reaction rates is implemented using hypergraphs which
provide graphically intuitive plots of biochemical pathways [Klamt et al., 2009]. A
detailed tutorial is available as a vignette within the package documentation. BiGGR
provides the following functionalities (see Figure 6.1 for a graphical summary):

4 Model creation: Models can be assembled by querying the metabolic recon-
struction databases for specific pathways (e.g. glycolysis), lists of reactions or
metabolites or gene identifiers.

<+ Model import/export: Models in SBML format can be easily imported into
BiGGR for further analysis. Model files exported from the web interface of the
BiGG database can also be imported. Each model created or modified within
BiGGR can easily be exported in SBML format.

<4 Flux estimation: BiGGR uses linear inverse model (LIM) approaches for flux
estimation. The fluxes in an underdetermined system can be calculated based on
a linear function (i.e. a weighted sum of the unknown variables) which is either
minimised (a ‘cost’ function) or maximised (a ‘profit’ function). The function to
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Figure 6.1: Overview of BiGGR functionality.

be minimised or maximised can be subject to inequality and equality constraints,
e.g. due to irreversibility of fluxes and the metabolic steady state assumption,
respectively. BiGGR can also generate ensembles of parameter combinations
according to the likelihood of explaining measured data.

<4 Visualisation: BiGGR provides automatic visualisation of a network with hy-
pergraphs using the hyperdraw package [Murrell, 2013]. The graph displays
metabolites connected with each other using hyperedges which represent reac-
tions. Edge widths represent the intensity of estimated fluxes. It usually works
best to plot a selected subset of metabolites or reactions.



6.4. DISCUSSION AND CONCLUSION 123

6.4 Discussion and conclusion

The BiGGR open source package is built in R and Bioconductor [Gentleman et al.,
2004], and derives input from metabolic reconstruction databases. BiGGR can be used
to automatically construct mathematical and graphical representations of metabolic
networks on the fly. BiGGR provides easy access to metabolic flux analysis for the
large user base of the R environment. The vast number of open source analysis tools
available in R are easily combined with the functionality in BiGGR. By supporting the
modelling standard SBML, BiGGR can be used in combination with other modelling
tools, as e.g. sybil [Gelius-Dietrich et al., 2013].

6.5 Acknowledgements

The authors would like to thank Karline Soetaert for excellent advice on linear inverse
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6.6 BiGGR package vignette

The BiGGR package vignette provides information on how to install and use the
package and gives an example of a model analysis with BiGGR. The vignette can
be found within the package source at http://www.bioconductor.org/packages/
devel/bioc/html/BiGGR.html.

6.6.1 Introduction

The main purpose of this package is to analyse metabolic systems and estimate the
biochemical reaction rates in metabolic networks. BiGGR works with the BiGG
[Schellenberger et al., 2010] database and with files encoded in the Systems Biology
Markup Language (SBML) from other sources. The BiGG database stores reconstruc-
tions of metabolic networks and is freely accessible. BiGGR is an entirely open source
alternative for a more extensive software package, COBRA 2.0, which is available for
Matlab [Schellenberger et al., 2011]. BiGGR makes it easy to apply a big variety of
open source R packages to the analysis of metabolic systems. Although it contains
less functionality than COBRA, BiGGR may be convenient for R users. The BiGG
system provides metabolic reconstructions on humans, M. barkeri, S. cerevisiae, H.
pylori, E. coli and S. aureus. BiGGR also works with the new reconstruction of
human metabolism Recon 2 [Thiele et al., 2013]. These reconstructions consist of
genes, metabolites, reactions and proteins that are identified and connected with each
other to form a network structure. The BiGGR package provides various functions
to interface to the BiGG database, and to perform flux balance analysis (FBA) after
importing selected reactions or pathways from the database. Other functions included
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in this package allow users to create metabolic models for computation, linear optim-
isation routines, and likelihood based ensembles of possible flux distributions fitting
measurement data. To this end, BiGGR interfaces with the LIM package [Oevelen
et al., 2009]. BiGGR provides models in standard SBML R object format for each
organism within the BiGG database as well as the new reconstruction of human meta-
bolism from the Biomodels database [Thiele et al., 2013] (see ‘data’ directory in the
package). This format allows easy construction of the stoichiometric matrix of the en-
tire system which may serve as the core of further computational analysis. Finally, the
package allows automatic visualisation of reaction networks based on a hypergraph
framework using the hyperdraw [Murrell, 2013] package.

6.6.2 Installation

BiGGR is installed as follows from the R console:

> source("http://bioconductor.org/biocLite.R")
> biocLite("BiGGR")

BiGGR depends on the Bioconductor packages rsbml [Lawrence, 2013], hyperdraw
[Murrell, 2013] (which in turn requires the package hypergraph) and the CRAN pack-
age LIM [Oevelen et al., 2009]. For detailed installation instructions of the depend-
encies we refer to the package documentations at http://www.bioconductor.org/
and http://www.cran.r-project.org/.

6.6.3 Example: A flux balance analysis with BiIGGR
The package is imported as follows:
> library("BiGGR")

To get an overview about the functions and databases available in the package,
you can use:

> library(help="BiGGR")

The reference manual which describes all functions of BIGGR in detail can be
found in the documentation directory (’doc’) of the package. In the following we will
provide a step-by-step guide demonstrating a flux estimation procedure in a model of
human brain metabolism. The general work flow using this package consists of the
following steps:

<4 Retrieve a model in SBML object format as provided in the package (alternat-
ively an R object containing the model can be generated from an SBML file)
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<4 Specify optimisation objective and model constraints and create a LIM model
file as input for the linear programming package LIM

<4 Estimate the reaction fluxes with linear programming

<4 Visualise the results using the hypergraph framework

Generate Model

There are several ways to create a model within BiGGR:

<4 Query one of the databases contained in the BiGGR package (use the command
data() to see all available databases). You can query with a list of genes (func-
tion buildSBMLFromGenes), a list of reaction identifiers (buildSBMLFromReactionIDs)
or for specific pathways
(buildSBMLFromPathways).

<4 Alternatively: Retrieve a text file with metabolic reactions from the web inter-
face of the BiGG database (http://bigg.ucsd.edu/bigg/main.pl). The user
can query and select reactions from BiGG which can then be exported in SBML
or text format. BiGG reactions saved in text format can be converted to an
internal SBML object by the function buildSBMLFromBiGG. An SBML file can
be imported using the rsbml_read function from the rsbml package.

Below we will demonstrate how to build an SBML model from a set of reaction
identifiers using the Recon 1 database. The list of reaction IDs can be found in
the ‘extdata’ subdirectory in the package. The model comprises the reactions of
glycolysis, pentose-phosphate pathway and TCA cycle. Note that the model was
already introduced in section 4.8.2.

##load reaction identifiers from package examples
file.name <- system.file("extdata",
"brainmodel_reactions.txt",
package="BiGGR")
reaction.ids <- scan(file.name, what=" ")
##load database
data("H.sapiens_Recon_1")
##build SBML model
sbml.model <- buildSBMLFromReactionIDs(reaction.ids, H.sapiens_Recon_1)

VVVVV+ + VYV

The model object sbml.model is an rshml object of class Model. It has 92 meta-
bolites participating in 73 reactions in 3 compartments.
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Specify constraints, optimisation objective and estimate fluxes

After building the model, we specify additional parameters necessary to run the flux
estimation. In the present model, several metabolites are unbalanced because not
all the biochemical reactions involving them are represented inside the model. An-
other unbalanced situation is when metabolites accumulate inside or outside the cell.
These metabolites must therefore not be subjected to the equality constraints (i.e. the
steady state constraint) of the linear programming routine for flux estimation. These
metabolites are termed external metabolites or, in short, externals. The objective
of this flux balance analysis is to maximise the net ATP production in the reaction
network given the constraints in the model. Note that, of course, also minimising
a linear function of fluxes in the model is possible in BiGGR (’loss’ function as op-
posed to ‘profit’ function). Below we specify the objective function and the external
metabolites.

> ##following term is to be maximised

> maximize <- "R_ATPS4m - R_NDPK1m - R_HEX1 - R_PFK - R_PGK + R_PYK"
> ##specify the external metabolites of the system

> externals <- c("M_glc_DASH_D_e", "M_lac_DASH_L_e", "M_ala_DASH_L_e",
+ "M_gln_DASH_L_e", "M_h2o_e", "M_co2_e",

"M_o2_e", "M_h_e", "M_o2s_m",

"M_adp_c", "M_atp_c", "M_pi_c",

"M_h_c", "M_nadp_c", "M_nadph_c",

"M_nal_c", "M_nal_e", "M_gln_DASH_L_c",

"M_nh4_c", "M_pyr_e")

+ + + + +

Additional equality and inequality constraints can be given for fluxes for which
the values are known beforehand, e.g. if they rely on experimental measurements.
Below we use measurements of cerebral metabolic substrate uptake and release rates
of glucose, lactate, glutamine and pyruvate in human brain [Lying-Tunell et al., 1980].
Assuming a brain mass of 1.4 kg, the rates for the fluxes given in equation.vars are
constrained to the values given in equation.values. Based on measurements of the
pentose phosphate pathway flux in the brain [Dusick et al., 2007], also the flux of
the glucose-6-phosphate dehydrogenase reaction (R_.G6PDH2R) is constrained. The
total oxygen uptake rate is constrained to be not higher than six times glucose uptake
rate according to the balance equation of aerobic respiration. Equality and inequality
constraints are given as lists in the variables eqns and ineq. Finally a LIM model file
is created using the function createLIMFromSBML.

> ##equality constraints

> equation.vars <- c("R_GLCtlr", "R_L_LACt2r", "R_GLNtN1",
+ "R_PYRt2r", "R_GLUDC", "R_G6PDH2r")
> equation.values <- c(0.2842,-0.01288,-0.0154,

+ -0.00336,0.11368,0.0196098)
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eqns <- list(equation.vars, equation.values)

##inequality constraint: R_02t is smaller or equal to 6 * R_GLCtlr

inequalities <- list("R_02t", "6 * R_GLCtlr", '"<=")

##turite LIM file to system's temporary directory

limfile.path <- tempfile()

createLIMFromSBML (sbml.model, maximize, equations=eqns,
inequalities=inequalities,
externals=externals, file.name=limfile.path)

+ + VVVVVYV

Running simulations to estimate fluxes

BiGGR uses Linear Inverse Models for estimating the fluxes as provided by LIM. All
the functionality of this package can be used in this framework. The function 1sei in
LIM provides least squares estimation with equalities and inequalities which is useful
to fit the model to biochemical measurements of metabolite exchange. The interface
to LIM’s 1sei in BiGGR is getRates which takes the model file (or a LIM object)
as an input parameter to estimate the fluxes with respect to the objective function.

> rates <- getRates(limfile.path)

Sampling of feasible flux distributions

Experimentally quantified fluxes are always subject to measurement error. In the
above example, the rates for, among others glucose and glutamine uptake (R_GLCt1r
and R_GLNtN1, respectively) and uptake of lactate and pyruvate (R_L_LACt2r and
R_PYR#t2r) were fixed. However, it is of interest how the estimated fluxes vary if
measurement error on the known fluxes is taken into account. BiGGR, provides the
functionality to calculate the uncertainty of all estimated fluxes by performing a ran-
dom walk in the feasible flux space with a Markov chain Monte Carlo (MCMC)
method. To this end, BiGGR provides an interface to the xsample function from
the package limSolve [den Meersche et al., 2009]. Ensembles of feasible flux vectors
within the precision limits of the known fluxes can be sampled with the function
sampleFluxEnsemble. As an example, we will sample an ensemble of 100000 flux
vectors within the precision limits of the data [Lying-Tunell et al., 1980] given as the
standard deviation. Note that standard deviations were estimated from the reported
median and range using an approach of Hozo et al. [Hozo et al., 2005]. Starting point
for the random walk is the previously optimised flux vector. For quicker convergence
of the MCMC procedure, we set the jump length manually (see ?sampleFluxEnsemble
for details).

> ##specify the fluxes with uncertainty given as SD in a data frame
> uncertain.vars <- data.frame(var=equation.vars[c(1,2,3,4,6)],
+ value=equation.values[c(1,2,3,4,6)],
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Figure 6.2: Posterior distributions of the flures R_GLCt1r and R_L_LACt2r after the sampling with
Markov Chain Monte Carlo.

+ sd=c(0.058,0.032,0.034,0.004, 0.007))
> ##sample feasible flux distributions with MCMC

> ensemble <- sampleFluxEnsemble(limfile.path, uncertain.vars,

+ xO=rates, iter=100000, jmp=0.1)

>

The sampled posterior distributions can then simply be plotted as histograms as
shown in figure 6.2 for glucose uptake and lactate release.

> par(mfrow=c(1,2))

> hist(ensemble[, "R_GLCt1r"],

+ xlab="flux (mmol/min)", main="R_GLCtlr")

> mtext (bquote (mu== ~. (round(mean(ensemble[, "R_GLCt1r"]),2))

+ ~on," ” sigma== ~. (round(sd(ensemble[,"R_GLCt1r"]),2))))

> hist(ensemble[,"R_L_LACt2r"],

+ xlab="flux (mmol/min)", main="R_L_LACt2r")

> mtext (bquote (mu== ~. (round(mean(ensemble[,"R_L_LACt2r"]),2))

+ “on," ~ sigma== ~. (round(sd(ensemble[,"R_L_LACt2r"]),2))))

Furthermore, it is now possible to assess the effect of possible measurement error
in R_.GLCtlr and R_O2t on other fluxes present in the system. As an example, we
calculate the net rate of ATP production for the whole ensemble from the linear flux
combination R_ATPS4m - R_NDPKIm - R_HEX1 - R_PFK - R_.PGK + R_PYK.
Note that the net ATP production was the profit function of the flux balance analysis
presented above.
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Figure 6.3: Posterior distribution of net ATP production rate in the model.

##calculate net ATP production for each flux vector in the ensemble
atp.prod.ens <- eval(parse(text=maximize), envir=data.frame (ensemble))

>

>

> hist(atp.prod.ens,

+ xlab="ATP production (mmol/min)", main="Net ATP production")

> mtext (bquote (mu== ~. (round(mean(atp.prod.ens),2))

+ ~on," ~ sigma== ~. (round(sd(atp.prod.ens),2))))

Figure 6.3 shows the spread of the rates of net ATP production given the variability

in the measured input fluxes. In this way, the uncertainty of the objective function
value can be investigated with respect to possible measurement noise of the fluxes in
the model.

Visualisation of networks and fluxes

BiGGR provides visualisation using hypergraphs. To this end, BiGGR uses the pack-
age hyperdraw which in turn uses the Graphviz engine. Hypergraphs are graphs which
can connect multiple nodes by one edge. Metabolites are represented by nodes and re-
actions are represented by edges connecting the nodes. The fluxes of the biochemical
reactions can be represented by the width of the edges (a wider edge corresponds to a
higher flux value). An SBML model can be converted into a hyperdraw object using
the function sbml2hyperdraw. Since many models contain numerous metabolites and
reactions, a ‘human readable’ automatic graphical representation of the system in
one single plot is often infeasible. Therefore, specific subsets of metabolites and/or
reactions can be passed as an argument to the sbml2hyperdraw function and only
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metabolites or reactions belonging to the specified sets are visualised. Below we will
visualise selected metabolites and reactions in the glycolytic pathway and the pentose
phosphate pathway, which is a subset of our example model. As a second argument
we pass the reaction rates calculated in 6.6.3 in order to represent the reaction rates
by the width of the edges.

> relevant.species <- c("M_glc_DASH D_c", "M_g6p_c", "M_fép_c",

+ "M_fdp_c", "M_dhap_c", "M_g3p_c",

+ "M_13dpg_c", "M_3pg_c", "M_2pg_c",

+ "M_pep_c", "M_pyr_c", "M_6pgl_c", "M_6pgc_c",
+ "M_rubp_DASH_D_c", "M_xubp_DASH_D_c",

+ "M_rb5p_c", "M_g3p_c", "M_s7p_c")

> relevant.reactions <- c("R_HEX1", "R_PGI", "R_PFK", "R_FBA",

+ "R_TPI", "R_GAPD", "R_PGK", "R_PGM",

+ "R_ENO", "R_PYK", "R_G6PDH2r", "R_PGL",
+ "R_GND", "R_RPE", "R_RPI", "R_TKT1")

> hd <- sbml2hyperdraw(sbml.model, rates=rates,

+ relevant.species=relevant.species,

+ relevant.reactions=relevant.reactions,

+ layoutType="dot", plt.margins=c(20, 0, 20, 100))

The hypergraph object can then simply be plotted using the plot function:
> plot(hd)

The resulting plot is shown in Figure 6.4. Flux values are displayed following each
reaction identifier. The forward direction is defined in the BiGG database according
to biochemical conventions, but if the actual calculated flux is backwards according to
the definition the arrow is dashed '. Additional graphical arguments are documented
in the help file (see ?sbml2hyperdraw).

Below, we give various reactions and metabolites in the TCA cycle which are
present in our example model and plot all components using a circular layout (see
Figure 6.5):

> relevant.species <- c("M_cit_m", "M_icit_m" , "M_akg_m",

+ "M_succoa_m", "M_succ_m", "M_fum_m",

+ "M_mal_DASH_L_m", "M_oaa_m")

> relevant.reactions <- c("R_CSm", "R_ACONTm", "R_ICDHxm",

+ "R_AKGDm", "R_SUCOAS1im", "R_SUCDIm",

+ "R_FUMm", "R_MDHm", "R_ICDHyrm", "R_ME1m",

+ "R_ME2m", "R_ASPTAm","R_AKGMALtm", "R_GLUDym",

INote that in the BIGGR program available online, arrows depicting reverse fluxes are coloured
red.
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Figure 6.4: Estimated fluzes in the glycolytic pathway and parts of the pentose phosphate pathway.
For each reaction, the arrow points in the direction of the calculated fluz. If that is backward relative
to the direction defined as forward in the metabolic reconstruction, the arrow is dashed. Note that
only a subset of all metabolites and reactions is plotted.

+ "R_ABTArm", "R_SSALxm","R_CITtam")

> hd <- sbml2hyperdraw(sbml.model, rates=rates,

+ relevant.reactions=relevant.reactions,

+ relevant.species=relevant.species,

+ layoutType="circo", plt.margins=c(100, 235, 100, 230))
> dev.new() ##0Open a new plotting device

> plot(hd)

In this example, reactions with a flux equal to zero are displayed in grey. Note
that metabolites which are not specified are not plotted, even if reactions in which
they participate are drawn. This is for instance the case for the exchange reaction
below:

M_akg_m + M_mal DASH_L_c -> M_akg_c + M_mal_DASH_L_m
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Figure 6.5: Estimated fluzes in the citric acid cycle in the mitochondrion.

The visualisation function sbml2hyperdraw is not restricted to FBA models, but
sbml2hyperdraw can be used as a generic plotting function for SBML models. To
this end, in case that no reaction rates are given as argument, all edges are plotted
with the same width and in the same colour.

6.6.4 Troubleshooting BiGGR

Model building is an iterative process and requires careful selection of parameters and
arguments. Some of the most common problems and solutions are described below:

<4 Infeasible solution: This problem can be encountered when using the linp
method form the LIM package. This problem occurs when the constraints
provided by the user for the model are conflicting. (A trivial example is that
a constraint says that a specific flux is greater than 5 units and another con-
straint says the same flux is smaller than 4. Such conflicts can be much more
subtle). The reactions in the model file may sometimes be defined incorrectly,
for instance with regard to their reversibility.

<4 Visualising too many metabolites and reactions: If the plotting area is
too small to fit all boxes for metabolites, the following error is produced by the
hyperdraw package:
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Error in " [.unit’ (pts$x, ref + step)
Index out of bounds (unit subletting)

In case you encounter this error when plotting your model, you can consider
several possibilities:

— Increase the size of the plotting area: When plotting to the screen, width
and height of the plotting window can be set with the x11() command.
Type 7x11 for more information. Similarly, figure dimensions can be set
when plotting to a jpeg, png, pdf, eps etc. device. Type for instance 7pdf
for the documentation.

— Consider plotting only a subset of the metabolites and reactions in the
model. It is possible to pass a list or vector of relevant species and/or
relevant reactions to the function sbml2hyperdraw. See ?sbml2hyperdraw
for more information.

<4 Resizing the plotting window: Resizing the plotting window after plotting
a model can cause the edges to get distorted. We advice not to manually resize
the plotting window. Instead, if a larger plotting area is desired, the dimensions
of the plotting area can be set as described above.

6.7 Author Contributions

Implemented the software: HH and AKG. Designed the model: FS and JHGMvB.
Conducted the model simulations: HH, FS, JHGMvB.
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Several years of my research in the Systems Biology of energy metabolism have
been summarised in this thesis. During this research, approaches in diverse fields were
applied, including bioinformatics, biophysics, mathematics and software development.
This chapter aims to put the results obtained during this PhD project into perspective
and elaborates on the achievements and limitations of the work.

7.1 The importance of mathematical modelling of
energy metabolism

Energy is necessary for all living entities to cater for growth, reproduction and func-
tion. Biochemical mechanisms for the conversion of energy are therefore essential com-
ponents of any living organism and the investigation of these mechanisms is crucial
for understanding the molecular basis of life. All computational approaches developed
and applied in this thesis were used to study energy metabolism. The importance of
computational methods in the research field of bioenergetics should not be disregarded
since these methods play an important role especially in the quantitative investiga-
tion of cellular processes involved in energy metabolism [Cloutier and Wellstead, 2010,
Sangar et al., 2012, Schmitz et al., 2011]. Computational models can be used to ana-
lyse experimental data and to test hypotheses about the modelled system, thereby
facilitating new experimental strategies and designs. To reproduce in wvitro and in
vivo biological processes in silico, the majority of models rely on experimental data
obtained in laboratory experiments. However, the precision of experimental data that
can be obtained is subject to noise in a number of ways. Any apparatus or technical
device used to extract biological data has limited precision or resolution, and there-
fore a level of uncertainty must be assigned to all measurements. Variation within
populations also accounts for noise in experimental data. For instance, if a certain
metabolite or enzyme concentration is measured in two different animals within the
same species, the concentrations will most likely not be exactly equal. Furthermore,
biological systems tend to be subject to intrinsic noise within the system. Model
parameters are components of a computational model which are often not determined
precisely and therefore are subject to noise. In order to make model simulations as
realistic as possible, noise in model parameters must be taken into account. In order
to obtain useful predictions from computational models, their uncertainty with re-
spect to changes in parameter values must be considered. Within this thesis, a major
bottleneck in the computational modelling of energy metabolism was approached: the
consequences of uncertainty in model parameters describing physical and biological
properties of the system.
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7.2 Making use of literature information on model
parameters - towards viable models of energy
metabolism

Often, mathematical models of metabolic processes are subject to uncertainty in their
predictions. While model variables, such as a concentration of a certain metabolite,
represent biological entities that can change over time, model parameters, for instance
enzyme velocities or binding constants, represent biological properties that do not
change during a model simulation. The dynamics of model variables are defined
by the values of the model parameters. The uncertainty in the model parameters
therefore directly affects the uncertainty in model predictions. Small changes in single
parameter values can therefore have significant effect on the dynamics of the model
variables. In other cases, the model might be over-parametrised and even strong
variability in model parameters do not significantly alter the dynamics of the model
variables.

A novel aspect in the research of this thesis is the quantitative incorporation of
noise on parameter values in the analysis of metabolic models. In this thesis it is
argued that a set of model parameters should never be treated as a ‘true’ set of
parameters that correctly reflects biological reality. Models with only one valid and
unshiftable set of parameters might introduce a bias in the model predictions by
setting a priori information represented by the parameters into stone. A spread in
model predictions is therefore not taken into account which in some cases can lead
to false assumptions on biological processes which are investigated with the model,
because possible error is disregarded. In the worst case, a model parameter could be
ill-determined and therefore the model would yield unreasonable predictions, which
would render the model useless. Also, we believe that if parameters are optimized
to experimental data, it is dangerous to merely rely on single estimates. Useful,
practical and therefore viable models must take any source of uncertainty explicitly
into account.

To make models of energy metabolism more viable, we propose that each para-
meter (e.g. the maximum velocity of the creatine kinase reaction) is treated as a prob-
ability distribution which reflects the spread in its probable values. The adjustment
of model parameters to experimental data is conducted in a Bayesian fashion. This
means that for each model parameter, a posterior distribution of values is sampled
that could describe the experimental data [Liebermeister and Klipp, 2005, Brown
et al., 2004, Gutenkunst et al., 2007b]. In some cases, values of model parameters are
relatively well described in the scientific literature. In Bayesian parameter estimation,
it is then feasible to incorporate this prior information on the parameter value and
its possible spread. In this thesis, the incorporation of literature information as prior
information on parameter values has been done in a quantitative manner. As a res-
ult, the uncertainty of predictions made with models of energy metabolism could be
narrowed based on this information. In this thesis, we applied this strategy to models
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of the creatine kinase system (chapters 3 and 4) and of the citric acid cycle (chapter
5). The approach is thus shown to be versatile and can be applied to very different
types of models: models of differential equations with detailed enzyme kinetics, in
which parameters represent kinetic properties (chapter 3 and 4) and models for 13C
flux estimation (chapter 5) where each parameter represents a reaction flux.

7.3 Computational investigation of creatine kinase
function

Creatine kinase catalyses the reversible transfer of high-energy phosphate from ATP
to creatine to form phosphocreatine. In this thesis, a simple model of the creatine
kinase system was used (chapters 2 to 4). First a naive parameter sensitivity analysis
was conducted on the model (chapter 2). Previous model analysis suggested that
energy transport in cardiac muscle is carried out predominantly by ATP and not by
phosphocreatine [van Beek, 2007], contradicting what is known as the ‘phosphocreat-
ine shuttle hypothesis’ [Bessman and Geiger, 1981] which states that phosphocreatine
is the chief energy transport molecule in muscle.

By adding moderate random noise on all parameter values, model predictions
about the phosphocreatine shuttle hypothesis became very uncertain. However, it
was suggested by Gutenkunst et al. that even with a high degree of uncertainty in
model parameters, models still can yield useful predictions, if the multidimensional
parameter space is explored extensively and the uncertainties in model parameters are
known [Gutenkunst et al., 2007b]. The parameter space can be explored by sampling
a posterior distribution of parameter sets with the Metropolis-Hastings algorithm
[Brown et al., 2004].

Based on the theoretical framework proposed by Brown et al. and Gutenkunst et
al., Bayesian parameter inference on the simple model of the creatine kinase system
was conducted (chapter 3). The model was calibrated with data from experiments
on isolated perfused rabbit hearts, in which the response time of ATP production
to a change in energy demand was measured with and without the presence of the
functional creatine kinase enzyme. Also, measurements on molecular and organellar
biochemical parameters were included into the analysis. Parameter values and their
standard errors were extracted from the scientific literature and used as priors in
the Bayesian parameter estimation. Parameter ensembles were generated that could
describe the experimental response time data relatively well. Using the parameter en-
sembles, the predicted fraction of energy transported via the phosphocreatine shuttle
was relatively low at 15£8%.

When these results were published, the study was harshly criticised by a group of
researchers advocating the phosphocreatine shuttle hypothesis [Aliev et al., 2011]. A
major assumption for the phosphocreatine shuttle hypothesis is a diffusion restriction
for ATP and ADP between mitochondria and myofibrils (see e.g. [Saks et al., 2008]).
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In chapter 3, the parameter describing the diffusion of ATP is estimated to be much
higher than assumed in other studies [Aliev and Saks, 1997, Vendelin et al., 2000]. In
[Aliev et al., 2011], the authors argue that their model also can accurately describe
the response time of ATP production in response to increased cardiac workload, even
when assuming limited ATP diffusion. However, we found that the models by Saks
and colleagues fail to describe a shorter response time in the case that creatine kinase
is inhibited, as already shown in our original publication that was criticised ([Hettling
and van Beek, 2011] also see Chapter 3.8). A decrease of the response time of cardiac
ATP production when creatine kinase is inhibited or absent was measured in different
laboratories and different mammalian species or isolated myocytes [Gustafson and
Van Beek, 2002, Harrison et al., 1999, Kindig et al., 2005]. In order to refer to the
research from chapter 3 as a ‘failure’ [Aliev et al., 2011], it should be shown by Saks
et al., that the response time with impaired creatine kinase activity can be described
under the assumption of an obligatory phosphocreatine shuttle. In opposition to the
claims of Saks et al., I think that the shuttle hypothesis is on no account a definite fact
that cannot not be challenged [Beard and Kushmerick, 2009, Vendelin et al., 2010,
Meyer et al., 1984]. Unlike in cardiac tissue, the function of creatine kinase in skeletal
muscle tissue is not as hotly disputed. In chapter 4, the model used in chapters 2 and
3 is modified and adapted to match experimental data from human skeletal muscle.
The model was calibrated with measurements of metabolite concentrations and muscle
acidity in human subjects after a cycling exercise bout. Model simulations showed
that creatine kinase is essentially responsible for the damping of high peaks of energy
demand in the muscle tissue. This is an important aspect of energy housekeeping,
but does not make the phosphocreatine shuttle the predominant vehicle of energy
transport.

7.4 13C metabolic flux analysis and parameter un-
certainty

To understand the dynamics of energy metabolism in vivo, quantitative knowledge
on the velocity of biochemical reactions is of major importance. In chapter 5, isotope
labelling data were analysed using a computational model in order to quantify the
fluxes in the citric acid cycle in porcine cardiac muscle. The data consisted of NMR
measurements in glutamate in 347 tissue samples. The computational model contains
detailed descriptions of the carbon transitions within reactions of the pathway. These
relationships between the metabolite pools in the model enabled the calculation of
the network fluxes from the measurement of a single metabolite. Two out of five
flux parameters of interest could be reasonably well estimated. For the remaining
three parameters, no reliable point estimates could be made (i) because of the high
measurement noise in the NMR data, (ii) because measurements were performed
at exactly one point in time to enable the study of heterogeneity between different
biopsies [van Beek et al., 1999] and (iii) because only one intermediate metabolite,
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glutamate, could be measured with NMR. Because of the high noise level in the data,
it would be dangerous to rely on mere point estimates obtained from fitting the flux
parameters. The uncertainty of the estimated fluxes was therefore investigated by
performing a random walk through parameter space (similar to the methodology in
chapter 3). Samples for which the spread in the estimated parameters was too high
were rejected from the analysis. Although sophisticated bioinformatics methods were
used to quantify the flux parameters, the method is limited by the quality of the data
used.

A possible improvement of the procedure described in chapter 5 would be meas-
urements of multiple intermediate metabolites in addition to glutamate. Also NMR
spectroscopy is a popular analytical method in metabolomics but has limited sensitiv-
ity when compared to mass spectrometry (MS) [Pan and Raftery, 2007] and it would
therefore be desirable to obtain MS measurements for the tissue samples. Maier et al.,
for instance, measured '2C citric acid cycle intermediates such as citrate and alpha-
ketoglutarate with gas-chromatography-mass spectrometry (GC-MS) [Maier et al.,
2008]. It would therefore be feasible to obtain more accurate data for the tissue
biopsies. In order to test if this data would improve the performance of the method,
the following simulation study was implemented: One sample of artificial MS data
was generated by simulating the model used in chapter 5 with the best fit parameters
from Figure 5.2. All mass isotopomers of the metabolites citrate, a-ketoglutarate, ox-
aloacetate and glutamate were considered, resulting in 18 data points for the sample
(in comparison: 9 data points could be obtained per sample with NMR). Gaussian
random noise was added to the simulated mass isotopomers according to the standard
deviations found in [Maier et al., 2008], which ranged from 1 to 71% but was assumed
to be at least 10%.

Figure 7.1 displays the results of the parameter estimation procedure with Markov-
chain Monte Carlo described in chapter 5 for the NMR data (top row) and the artificial
MS data (bottom row). Especially the parameter J.,., becomes identifiable in the
analysis with artificial MS data, since both a-ketoglutarate and glutamate pools are
part of the data. It is therefore concluded that the accuracy of the methodology of
13C flux analysis with the LIPSSS method (chapter 5) could be significantly improved
if MS measurements for more metabolites than merely glutamate were available.

7.5 A note on doping abuse and bicycle racing

In the first part of chapter 4, a computational model is presented to simulate heat
transfer in a bicyclist climbing the Alpe d’Huez during a time trial stage in the Tour
de France 2004. As an input for the model, physiological data from Lance Armstrong
was used which was measured over a period of time by Coyle [Coyle, 2005]. An
exceptionally high oxygen uptake of the cyclist during the time trial was estimated.
Additional to the calculations with the whole body model, a different model was used
to describe the dynamics of mitochondrial ATP production during bicycle racing on



7.5. DOPING IN BICYCLE RACING 141

p=4.3, 0=1.74 p=0.71, 6=0.07 1=9.48, 0=7.88 11=0.23, 6=0.05 4=0.72, 6=0.4
o %=3.98, best=3.43 %=0.73, best=0.69 %=6.84, best=4.47 %=0.22, best=0.21 %071, best=041
g g g M
" s g g
> o & 8
g
g 8 S
g7 g 8 3 3
=3 s e 3
o 8 T
£ 3 o
* g g g g
g & =
° ° ° °
L B B LI B | LI B | LN B B R | LA B B
] 5 10 15 20 0.0 0.4 0.8 0 10 20 30 40 50 0.0 0.2 04 0.6 00 05 10 15 20
Jrca (pmole/min/gdw) Py (fraction) Jexeh (Hmole/min/gdw) Tirans (Min) Panap (fraction)
11=3.55, 0=0.82 =0.68, 0=0.03 11=2.87, 0=0.82 11=0.22, 6=0.05 1=0.57, 6=0.29
%=3.41, best=3.06 o %=0.68, best=0.67 %=2.75, best=2.65 %=0.21, best=0.2 %=0.54, best=0.46
8 g 8 M
8 g g g [
> s E ® A
) 2 ]
§ 8 s g s @
3 ° 8 ] S °
EA g - g g
@ g
o s
[rag g s ]
° o ° °
L B B LI B | LI B | LN B B R | LA B B
[ 5 10 15 20 0.0 0.4 0.8 0 10 20 30 40 50 0.0 0.2 04 0.6 00 05 10 15 20
Jrca (pmole/min/gdw) Pg (fraction) Jexch (Lmole/min/gdw) Tirans (MiN) Panap (fraction)

Figure 7.1: 3C metabolic fluz estimation for one tissue sample analysed with the method described
in chapter 5. The top row shows the analysis with real NMR data and the incorporation of prior
information. In the bottom row, the same analysis was conducted with artificial MS data and the
same prior information. The artificial data has been generated by simulating the model with the set
of best fitting parameters from the analysis in the top row. The probability density functions of the
priors for the auxiliary parameters Jegch, Tirans and Panap are plotted with solid lines. On top of
each plot, ensemble mean, standard deviation, median & and best fit value are reported. Note that
the top row is the same as Figure 5.2.

a smaller scale.

On August 24th 2012, the United States Anti-Doping Agency (USADA) an-
nounced a life-time sports competition ban for Lance Armstrong and the revoke of all
his seven Tour de France titles for the illegal usage of performance enhancing drugs.
Already two years before that, at the time when the article which constitutes the
research in chapter 4 was being reviewed, the question was raised whether the models
used in this study could be used to investigate possible substance abuse in bicycle
racing. Chief evidence against Lance Armstrong, besides the testimony of his team-
mates, was the detection of erythropoetin (EPO) in blood and urine samples. EPO is
a peptide hormone which stimulates the production of erythrocytes (red blood cells),
increasing the body’s capacity of oxygen uptake to boost oxidative energy production
by the mitochondria. The published data for Lance Armstrong [Coyle, 2005] used for
the whole body model and the data used to calibrate the model on the subcellular
level [Sahlin et al., 1987] are mainly measurements of aerobic capacity, which, among
others, depends on oxygen transport in the blood. In order to investigate the effect
of EPO or blood doping, the model would have to be extended to take these other
processes into account. However, even if the model was extended it would be very
difficult to discern the effects of erythrocyte enhancing doping methods to for instance
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the effect of training in high altitudes. Besides EPO and blood doping, prohibited
substances that regulate the cyclists’ temperature were also mentioned by his former
soigneur Emma O’Reilly during the testimony'. The use of such substances may have
affected the regulatory processes modelled in chapter 5 and invalidated the computa-
tional predictions. An interesting future application of the whole body model would
be the testing of the effect of temperature regulating drugs in silico.

7.6 The metabolic modelling software tools BiIGGR
and FluxEs

Computational analysis of metabolic processes requires sophisticated software to sim-
ulate, optimise and visualise computational models. For some calculations conducted
during the research for this thesis, existing software tools and libraries could be used
(e.g. [Gutenkunst et al., 2007a, Binsl et al., 2010a]). However, the application and
extension of different methods conducted in this thesis often required functional ex-
tension of the existing tools. In the optimal case, this results in the development of
new software which can be provided to the scientific community. For the compilation
and the simulation of the model of brain metabolism (chapter 4) and similar models,
the software package BiGGR was developed (chapter 6). BIGGR is a software applic-
ation which allows for model generation, model visualisation and flux estimation via
Flux Balance Analysis. Furthermore, BIGGR provides an interface to the metabolic
reconstruction databases BiGG and Recon [Schellenberger et al., 2010, Thiele et al.,
2013]. An example of a flux balance analysis using BIGGR is given in chapter 6.6. To
this end, a computational model of brain energy metabolism [van Beek et al., 2011]
was used to estimate fluxes in the glycolysis pathway and to visualise the results.
The work in this thesis also comprised the development of software for flux analysis
with stable isotopes (chapter 5). To this end, the FluxEs software developed by Binsl
et al. [Binsl et al., 2010a] was rewritten and extended to facilitate the sampling of
parameter ensembles with Monte-Carlo Methods. FluxEs supports an easy to use file
format for encoding carbon transition networks. The software automatically gener-
ates the differential equations of a model and facilitates model simulation and flux
parameter estimation. Although FluxEs was developed to analyse LIPSSS data taken
at one ‘snapshot’ point in time (see the analysis of in vivo tissue biopsies in chapter
5), it is easily possible to include time-series data into the analysis. Theoretically,
other tracer experiments which rely for instance on the isotope %0, could be sim-
ulated using FluxEs. Both FluxEs and BiGGR are written in the R programming
language and are therefore open source, free of charge and platform independent. By
supporting the standard model exchange format SBML, interoperability with differ-
ent software packages is possible. BiGGR is publicly available in the BioConductor
software repository [Gentleman et al., 2004]. In the future, a new improved version
of FluxEs will be made available for the public.

1The testimony is available at http://cyclinginvestigation.usada.org.
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7.7 Conclusions

The outcome of the project of this thesis is manifold. One part of the work was the
development and modification of theoretical methods for modelling in Systems Bio-
logy. Main emphasis was put on developing strategies to take into account literature
information on model parameters. Another part was the application of these methods
to biological processes using existing models and biological data. To this end, (i) the
biological functions of the creatine kinase enzyme in muscle (chapter 3 and 4) and (ii)
the effect of various interventions in heart muscle in vivo on reactions in the citric acid
cycle (chapter 5) was investigated. Validations of the methods used showed that the
findings obtained have biological significance. Also, basic modelling was part of the
work in this thesis. The creatine kinase model was extended in order to describe ex-
perimental data on human subjects in endurance exercise (chapter 4). Finally, in the
process of this work, two software tools were developed that facilitate the analysis of
computational models. The results in this thesis thus contribute to new improvements
in the research of energy metabolism using a Systems Biology approach.
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Summary

Viable Models of Energy Metabolism

Contemplating Uncertainty in Measured Data,
Parameter Estimates and Predictions

This thesis describes three computational approaches to analyse (mammalian) meta-
bolic systems: kinetic modelling, flux estimation from stable isotope measurements
and prediction of flux distribution in metabolic networks using constraint-based mod-
elling. In all three approaches, emphasis is put on the quantification of uncertainty
for parameters and model predictions.

The sustainment of life in any organism depends on the uptake and subsequent bio-
chemical conversion of nutritional substances from the environment. The entirety of
all biochemical reactions which transform nutrition into metabolites used for growth,
proliferation or as a source of energy refers to metabolism. Investigation of meta-
bolism is therefore essential in our understanding of life at a molecular level. Until
now, the quantitative investigation of metabolism heavily relies on the application
of computational models and methods so as to make sense out of data derived from
laboratory experiments. The discipline of combining experimental and theoretical ap-
proaches in order to understand a biological system as a whole is defined as Systems
Biology. A computational model in Systems Biology is essentially an abstraction
of a biological process, formulated in mathematical terms. Oftentimes, models are
calibrated by adjusting their parameter values such that the model dynamics can
describe given experimental data. The calibrated models can then be used to test
hypotheses about the biological system in silico. In the research of this thesis, mainly
the metabolic components necessary for an organism to conduct mechanical work are
investigated. In order to get further insight into the energy metabolism in animal and
human muscle, various types of models encoded in different mathematical formalisms
were used. The formalisms as well as techniques to complement computational models
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with experimental data are reviewed in chapter 2.

Chapter 3 is dedicated to the creatine kinase system, an intriguing enzymatic
process involved predominantly in the energy metabolism of muscle cells. Several
metabolic functions have been attributed to the creatine kinase system, of which one
has been significantly controversial and heavily debated. This controversial meta-
bolic function known as ‘phosphocreatine shuttle hypothesis’ refers to the widespread
assumption that the creatine kinase system in heart muscle is essential for the trans-
port of energy-carrying molecules from sites of energy production (the mitochondria)
to sites of energy consumption (the myofibrils). This hypothesis was challenged in
chapter 3. We did this by quantifying energy transport, using a relevant mathematical
model on the creatine kinase system integrated with in vivo experimental data from
the isolated heart. In order to obtain model predictions that are statistically sound
with respect to measurement error in the data, model parameters were estimated as
posterior probability distributions rather than as single numerical values. Model pre-
dictions are therefore drawn from ensembles of probable parameter sets. The analysis
suggests that the ‘phosphocreatine shuttle’ only plays a minor role in heart muscle.
Instead, the creatine kinase system mainly acts as a buffering system which assures
sufficient energy supply even when the heart beats fast and much energy is consumed.
Further, a new hypothesis for the creatine kinase system is proposed based on the
model analysis: creatine kinase lowers inorganic phosphate levels in the cytosol to
protect from oxidative stress.

The next chapter (chapter 4) describes the simulation of energy conversion in a
cyclist’s body during a mountain time trial of the Tour de France. Besides the invest-
igation of heat production and transport using a whole body model, the biochemical
events during muscle contraction in the cyclist’s leg are predicted. Again, emphasis
was put on the functional role of the creatine kinase. The model used in the chapter
3 was therefore adapted to describe energy turnover in human muscle and extended
to account for muscle acidity. For model calibration, measurements from human leg
muscle during a bicycle exercise bout were used. Applying the calibrated model, it
was predicted that the main physiological role of the creatine kinase enzyme is, similar
than in cardiac tissue, the buffering of energy resources when the body is exposed to
high bursts of sudden energy demand during the bicycle race.

Chapter 5 returns to the investigation of energy metabolism in cardiac tissue. This
time, the focus is set on another essential process in mitochondrial energy produc-
tion: the citric acid cycle. To quantify energy turnover in distinct small regions of
the myocardium, we used in vivo data from carbon tracer experiments in the porcine
heart. Small tissue samples were taken after isotopically labelled substrate was given
to fuel aerobic energy metabolism. A sophisticated model that describes all trans-
itions between carbon atoms of the different metabolites within the system was then
used to analyse the data. As a result, the velocities of biochemical reactions around
the citric acid cycle could be quantified, which constitutes important information on
the physiology of the myocardium. To account for the relatively high noise level in
the data, we adapted the approach of dealing with parameter uncertainty by gen-
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erating ensembles of probable parameter combinations from chapter 3 to the carbon
transition networks used in this chapter. This framework allowed us to analyse exper-
imental data gained under different physiological and pharmacological conditions and
to draw conclusions about the citric acid cycle fluxes in the different cardiac states.
For instance, the citric acid cycle fluxes during ischaemia could be estimated, giving
valuable information about metabolic energy fluxes in the failing heart.

The final chapter introduces the software tool BiGGR for constraint-based mod-
elling of metabolism. Constraint based modelling is a technique to estimate meta-
bolic reaction fluxes when a priori quantitative information on the network is sparse.
Model constraints, for instance the steady-state constraint are used to limit the space
of possible flux values. BIGGR allows the assembly of metabolic models from, among
others, the BiGG database of metabolic reconstructions by querying for pathways,
genes, metabolites or reactions of interest. Fluxes can then be estimated using a vari-
ety of linear inverse modelling algorithms. Finally, the models and estimated fluxes
can be visualised in an intuitive way. Naturally, also constraint based models are
subject to uncertainty in the predicted fluxes. BiGGR therefore uses sophisticated
algorithms to enable the generation of flux ensembles respecting the constraints of
the model. To demonstrate the practicality of the software, chapter 6 describes an
entire work flow of flux estimation in an extensive model of energy metabolism in the
human brain. BiGGR is implemented in the R programming language and publicly
available to the scientific community in the Bioconductor repository.

In conclusion, computational strategies to quantitatively analyse metabolic sys-
tems were developed and applied during the course of this thesis. Special emphasis was
put on the analysis of uncertainty in predictions derived from computational models of
metabolism. The results described in this thesis thus contribute to new advancements
in the investigation of energy metabolism using a Systems Biology approach.






Samenvatting

Realistische Modellen voor Energiemetabolisme
Beschouwingen over Onzekerheid in Data, Parameterschattin-
gen en Voorspellingen

Dit proefschrift presenteert drie verschillende computationele benaderingen voor de
analyse van metabole systemen van zoogdieren: kinetische modelleren, schatten van
metabole fluxen middels metingen uit experimenten met stabiele isotopen en de voor-
spelling van fluxdistributies in metabole netwerken door middel van ‘constraint-based
modeling’.

In elk organisme is het (behoud van het) leven afhankelijk van de opname en
de daaropvolgende biochemische conversie van voedingsstoffen. Het geheel van alle
biochemische reacties verantwoordelijk voor de omzetting van voedingstoffen in meta-
bolieten voor groei, proliferatie of een energiebron wordt ‘metabolisme’ genoemd. On-
derzoek naar het metabolisme is daarom essentieel voor ons begrip van het leven op een
moleculair niveau te vergroten. Tot nu toe is het kwantitatieve onderzoek naar meta-
bolisme sterk afhankelijk van de toepassing van wiskundige modellen en methoden
om de metingen afkomstig van laboratoriumexperimenten te verklaren. De discip-
line waarin experimentele en theoretische benaderingen worden gecombineerd om een
biologisch systeem in het geheel te begrijpen wordt gedefinieerd als ‘systeembiologie’.
Een wiskundig model in de systeembiologie is in principe een abstractie van een biolo-
gisch proces, geformuleerd in wiskundige termen. Modellen worden vaak gekalibreerd
door de aanpassing van parameterwaarden zodanig dat het model de dynamiek van
de experimentele data kan beschrijven. Met de gekalibreerde modellen kunnen vervol-
gens hypotheses over het biologische systeem in silico getest worden. Het onderzoek
in dit proefschrift behandeld voornamelijk het metabolisme dat noodzakelijk is voor
het uitvoeren van mechanisch werk. Om een nader inzicht in het energiemetabol-
isme van de dierlijke (en menselijke) spier te krijgen, worden er verschillende soorten
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modellen gecodeerd en verschillende wiskundige formalismen gebruikt. Deze formal-
ismen alsook de technieken om de wiskundige modellen met experimentele data te
combineren zijn beschreven in hoofdstuk 2.

Het derde hoofdstuk is gewijd aan het ‘creatine kinase systeem’, een fascinerende
enzymatische proces dat hoofdzakelijk de energiestofwisselling in spiercellen betreft.
Er zijn meerdere metabole functies toegeschreven aan dit creatine kinase systeem,
waarvan vooral één functie zeer omstreden is. Deze omstreden functie, ook bekend
als de ‘fosfocreatine shuttle hypothese’, is de wijdverbreide veronderstelling dat het
creatine kinase systeem in de hartspier essentieel is voor het transport van energie-
dragende moleculen van plekken van de productie van energie (de mitochondrién)
naar plekken van het verbruik van energie (de myofibrillen). Deze hypothese wordt
uitgedaagd in hoofstuk 3. Hierbij is het energietransport met behulp van een relevant
wiskundig model van de creatine kinase systeem gekwantificeerd en geintegreerd met
in vivo data van experimenten met een geisoleerde hart. Om statistische zekerheid
over de voorspellingen van ons model te verkrijgen met betrekking tot meetfouten in
de data, worden de modelparameters niet als enkele waarden gezien, maar voor iedere
parameter wordt een distributie van mogelijke waarden berekend. Voorspellingen van
het model zijn daarom afgeleid van ‘ensembles’ van waarschijnlijke sets van de para-
meters. Onze berekeningen suggereren dat de ‘fosfocreatine shuttle’ slechts een kleine
rol speelt in het metabolisme van de hartspier. Wij betogen dat het creatine kinase
systeem voornamelijk een buffer functie heeft, die een voldoende energieverzorging
garandeerd als het hart sneller klopt en er dus meer energie verbruikt wordt. Verder
wordt een nieuwe hypothese voor het creatine kinase systeem voorgesteld op basis van
onze modelanalyse: creatine kinase verlaagt het niveau van anorganisch fosfaat in het
cytosol om de cel te beschermen tegen oxidatieve schade.

Het volgende hoofdstuk (hoofdstuk 4) beschrijft de simulatie van het energie meta-
bolisme in het lichaam van een fietser tijdens een berg-tijdrit in de Tour de France.
Naast het onderzoek naar de warmteproductie en -transport met behulp van wiskundig
model van het gehele lichaam, zijn de biochemische gebeurtenissen tijdens spiercon-
tractie in de benen van de fietser voorspeld. Opnieuw wordt de functie van het creatine
kinase systeem onderzocht. Daarvoor wordt het model van hoofdstuk 3 aangepast om
menselijke spieren te beschrijven en uitgebreid om rekening te houden met de zuur-
graad van de spier. Het model wordt gekalibreerd met metingen in een menselijke
beenspier tijdens een oefening op de fietsergometer. Met het gekalibreerde model
wordt voorgespelt dat, net als in de hartspier, de belangrijkste fysiologische functie van
het creatine kinase systeem de buffering is van de concentratie van energie-dragende
moleculen als de energievraag van het lichaam verhoogt is tijdens de fietswedstrijd.

In hoofdstuk 5 gaat het weer over de metabolisme in hartspier. Hier ligt de focus
op en andere essentiéle voortgang in de mitochondriale energieverzorging: de citroen-
zuurcyclus. Om het energieverbruik in verschillende kleine plekken in de hartspier te
kwantificeren hebben wij in vivo metingen van experimenten met een koolstof tracer
in een varkenshart. Kleine biopsies van het weefsel zijn gebruikt, nadat een met iso-
topen gemarkeerd substraat is gegeven als energiebron. Met een gedetailleerd model,
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dat alle overgangen tussen de koolstofatomen van de verschillende metabolieten bes-
chrijft, hebben wij de data geanalyseerd. Daardoor konden wij de omzetting van
de biochemische reacties in de citroenzuurcyclus kwantificeren, wat belangrijke in-
formatie over de fysiologie van het hart oplevert. Om met het relatief hoge niveau
van ruis in de metingen rekening te houden hebben wij de ‘ensemble’ methode uit
hoofdstuk 3 aangepast, opdat zij met het model van de koolstof-overgangen werkt.
Hiermee konden wij vervolgens de experimentele data over verschillende fysiologis-
che en farmacologische condities analyseren en conclusies trekken over de fluxen van
de citroenzuurcyclus bij verschillende hartbelasting. Het was bijvoorbeeld mogelijk
de fluxen van de citroenzuurcyclus voor het ischemische hart te schatten, wat ons
interessante informatie over het zieke hart geeft.

Het laatste hoofdstuk introduceert het software pakket ‘BiGGR’ voor constraint-
based modelleren van het metabolisme. Constraint-based modelleren is een techniek
voor het schatting van de fluxen van metabole reacties als er niet veel a priori in-
formatie over de metabole netwerk is. Beperkingen van het model (constraints) bij-
voorbeeld de steady-state beperking, helpen de ruimte van mogelijke fluxwaarden te
beperken. BiGGR stelt ons in staat een systeem van metabole reacties te maken
door de integratie met de BiGG database waar de gebruiker naar genen, metabol-
ieten of metabole routes kan zoeken. Metabole fluxen kunnen geschat worden door
gebruik te maken van verschillende lineaire inverse modelleringsalgoritmen. Modellen
en geschatte fluxen kunnen vervolgens op een intuitive manier gevisualiseerd worden.
Natuurlijk zijn ook constraint-based modellen onderworpen aan onzekerheid van de
gekwantificeerde fluxen. Daarom gebruikt BiGGR geraffineerde algorithmen om flux-
ensembles te berekenen die de beperkingen van het model respecteren. Wij tonen de
toepasbaarheid van deze software in hoofdstuk 6, waarin een gehele workflow met een
uitgebreid model van het metabolisme in de menselijke hersenen geanalyseerd wordt.
BiGGR is geimplementeerd in programmeertaal R en beschikbaar via de Bioconductor
archief.

Concluderend, in dit proefschrift worden computationele strategién ontwikkeld
voor en toegepast op metabole systemen. Speciale nadruk wordt gelegd op de analyse
van de onzekerheid in de voorspellingen gemaakt door deze computationele modellen.
De resultaten die in dit proefschrift beschreven zijn dragen daarom bij aan nieuwe
ontwikkelingen in het onderzoek van het metabolisme met methodologie uit de sys-
teembiologie.






Acknowledgements

X

The long term project of a doctoral thesis is never an effort of only a single person.
The success of conducting the research required for this thesis therefore naturally
depended on my scientific mentors, collaborators and co-workers. And, of course,
friends and family were essential for reminding that life does not consist entirely of
research, manuscripts and deadlines.

Here I would like to thank everyone who supported me on the way of obtaining
my degree. First of all, I am greatly indebted to my supervisors Hans van Beek and
Jaap Heringa. Hans’ kind and patient guidance and his excellent scientific input was
the essential factor for the successful completion of my Ph.D. Throughout my time
at the Vrije Universiteit, I was always reassured that Hans would be there for me
and I would like to express my gratitude for that. My promotor Jaap’s door was
always open for me to help with any concern. Jaap’s knowledge, his keen intellect
and also his genuine interest in my person make it a pleasure to have a conversation
with him. I hope to continue the professional and private contact with both of them
in the future.

My time at the IBIVU would not have been the same without my great colleagues.
Thomas, Bernd, Walter and Bart, each one of them was a colleague at the beginning
but has become a very good friend. The time we spend together in room P.138 will
always remain unforgettable. I am very thankful to Bernd and Thomas for all their
scientific input and support and I am happy to have both as my paranymphs. I would
also like to express my gratidute to all other members of the IBIVU (and to some
people in the department of clinical genetics at the VUmc) that I had the pleasure
to work with: Anton, Nicola, Sanne, Anand, Hilal, Farah, René, and as well to the
‘younger generation’ of Ph.D. students: Ali, Mohammed, Punto, Qingzhen, Annika
and especially Erik who gave valuable input for this thesis.

During my time as a Ph.D. student, I had the privilege to be in a stable em-
ployment at the Vrije Universiteit Amsterdam in positions funded by the Centre for
Medical Systems Biology and the Netherlands Consortium for Systems Biology, which
I am very greateful for. I would also like to thank all members of the committee that

171



172 ACKNOWLEDGEMENTS

took the time and effort to read this thesis and to be part of the defence ceremony:
Bas Teusink, Bret Olivier, Albert de Graaf, Jaap Molenaar, Marko Vendelin, and
Martijn Huynen.

I also want to thank everyone who helped me to finalize this book: Bernd for
helping me with the dutch summary, Brian and Anika for designing the cover, my
sister Anna for helping me with the figures and Irisa for professional proofreading and
language editing.

A special thanks goes to everyone that I had the pleasure to live with in the shared
flat on Singel 6C. There is certainly never a dull moment in this house.

Whatever life throws at me, I am greatful that I always am able to count on my
family. I would like to share this gratitude with my parents, Gerd and Bettina, my
siblings Anna and Benni and my grandmother, Nora.

Finally, I want to express my genuine gratitute for my girlfriend Irisa Ono. We
met at the university when I just had started my Ph.D. and the time that followed
was the best in my life. We have been inseperable ever since and I hope this will never
change.






