35 research outputs found

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.Peer reviewe

    Rapid and highly variable warming of lake surface waters around the globe

    Full text link
    peer reviewedIn this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade-1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors - from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade-1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade-1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes. © 2015. American Geophysical Union. All Rights Reserved

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    Peer reviewed. ©2015. The Authors.This is an open access article under theterms of the Creative CommonsAttribution-NonCommercial-N oDerivsLicense, which permits use and distri-bution in any medium, provided theoriginal work is properly cited, the use isnon-commerc ial and no modificationsor adaptations are made.In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade 1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors —from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade 1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade 1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes

    Time perception deficits in Attention-Deficit/Hyperactivity Disorder and Comorbid reading difficulties in child and adolescent samples

    Get PDF
    Objective: To investigate time perception in Attention-Deficit/Hyperactivity Disorder (ADHD) with and without comorbid reading difficulties (RD) in child and adolescent participants. Method: In study 1, 50 children with ADHD (31 ADHD, 19 ADHD+RD) and age-matched healthy controls (n=50), completed three psychophysical tasks: duration discrimination (target duration of 400 ms versus a foil duration), frequency discrimination (a control condition to evaluate general perceptual ability), and a duration estimation task using the method of reproduction for intervals of 400 ms, 2000 ms, and 6000 ms. Study 2 used the same tasks with an adolescent sample (35 ADHD, 24 ADHD+RD, 39 controls). Results: In both studies, children and adolescents with ADHD and ADHD+RD displayed some impairments in duration discrimination and the precision with which they reproduced the intervals on the estimation task, particularly the shorter 400 ms interval. The most severe impairments tended to occur in the comorbid ADHD+RD group. No impairments were found on the frequency discrimination task. ADHD participants also displayed significant intraindividual variability in their performance on the estimation task. Finally, working memory, estimated full-scale IQ, and teacher report of hyperactivity/impulsivity were found to differentially predict performance on the time perception measures in the adolescent clinical sample. Conclusions: Deficits in duration discrimination, duration estimation, and intra-individual performance variability may have cascaded effects on the temporal organization of behaviour in children and adolescents with ADHD and ADHD+R

    A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate.

    Get PDF
    The latest major group of plants to evolve were the grasses. These became important in the mid-Paleogene about 40 million years ago. During evolution, leaf CO2uptake and transpirational water loss were optimized by the acquisition of grass-specific stomatal complexes. In contrast to the kidney-shaped guard cells (GCs) typical of the dicots such as Arabidopsis, in the grasses and agronomically important cereals, the GCs are dumbbell shaped and are associated with morphologically distinct subsidiary cells (SCs). We studied the molecular basis of GC action in the major cereal crop barley. Upon feeding ABA to xylem sap of an intact barley leaf, stomata closed in a nitrate-dependent manner. This process was initiated by activation of GC SLAC-type anion channel currents. HvSLAC1 expressed in Xenopus oocytes gave rise to S-type anion currents that increased several-fold upon stimulation with >3 mM nitrate. We identified a tandem amino acid residue motif that within the SLAC1 channels differs fundamentally between monocots and dicots. When the motif of nitrate-insensitive dicot Arabidopsis SLAC1 was replaced by the monocot signature, AtSLAC1 converted into a grass-type like nitrate-sensitive channel. Our work reveals a fundamental difference between monocot and dicot GCs and prompts questions into the selective pressures during evolution that resulted in fundamental changes in the regulation of SLAC1 function. Schäfer et al. report that guard cells of the cereal crop barley require nitrate for ABA-induced stomatal closure—a feature accomplished by the guard cell anion channel HvSLAC1. Nitrate-dependent gating of HvSLAC1 and other monocot SLAC1-type anion channels evolved from a TMD3 tandem motif after the split between monocots and dicots
    corecore