11 research outputs found

    Cowpox Virus Transmission from Rats to Monkeys, the Netherlands

    Get PDF
    We report an outbreak of cowpox virus among monkeys at a sanctuary for exotic animals. Serologic analysis and polymerase chain reaction were performed on blood and swab samples from different rodent species trapped at the sanctuary during the outbreak. Sequence comparison and serologic results showed that brown rats (Rattus norvegicus) transmitted the virus to monkeys

    Chemical immobilization of chimpanzees (Pan troglodytes) using a combination of detomidine and ketamine

    No full text
    Objective : To determine if a combination of detomidine and ketamine can be used for effective chemical immobilization of chimpanzees. Study design Observational study. Animals Twenty-one adult captive chimpanzees (12 males, nine females), age 846 years, weighing 40.468.4 kg. Methods : The chimpanzees were immobilized with intramuscular (IM) detomidine and ketamine by a darting system. Based on estimated weights, doses administered were 50 mu g kg-1 detomidine and 4 mg kg-1 ketamine in groups 1 and 2, and 60 mu g kg-1 and 5 mg kg-1 respectively in group 3. Eight minutes in group 1 and 15 minutes in groups 2 and 3 were allowed from the time of apparent immobilization before removing the animals from their enclosures. Body temperature, arterial haemoglobin saturation and pulse rate were measured. The time from injection to induction (recumbency and absence of voluntary movement), total anaesthetic and recovery times (with or without atipamezole) were recorded. Results : Immobilization occurred within 5 minutes after darting in most animals. Early handling of the chimpanzees often resulted in arousal and required further doses of ketamine IM. Most animals were hypoxaemic and hypothermic. Occasionally, bradycardia was observed. Atipamezole resulted in an acceptable quality of recovery 10 minutes after IM injection. The duration of immobilization varied widely when no antagonist was administered. Conclusions and clinical relevance : The combination detomidine (60 mu g kg-1) and ketamine (56 mg kg-1) can be used for the immobilization of chimpanzees for non- to minimally invasive procedures. A period of 15 minutes should be allowed before handling to avoid unwanted arousal. Oxygen administration is recommended to reduce hypoxaemia. Administration of atipamezole is justified to hasten recovery

    Prevalence of dental disorders in degus and evaluation of diagnostic methods to determine dental disease and its prognosis

    No full text
    Degus (Octodon degus) are prone to develop dental disease with deleterious health effects. The two studies reported here aimed to determine the prevalence of dental disorders in degus and to identify and evaluate diagnostic tools for determination of prognosis of these disorders. In study A, health data from 225 degus at AAP, Rescue Center for Exotic Animals in the Netherlands, were collated and the prevalence of dental disorders and differences in sex and age at clinical onset of symptoms associated with dental disorders were described. The prevalence was 34.7 per cent and higher (P<0.01) in males than in females. The occurrence of cheek teeth malocclusion was highly positively (P<0.0001) correlated to mortality. In study B, 36 skulls were examined by macroscopic evaluation, radiography and histology. Additionally, the calcium:phosphorus (Ca:P) of mandibular bone in degus with and without dental disorders were determined. There was no significant (P=0.10) difference in Ca:P between the two groups. Quantifying mandibular apical cheek teeth elongation via macroscopic evaluation was highly correlated (P<0.01) to the results obtained via radiography. Examination for apical elongation by palpation and diagnostic imaging should be included in routine health monitoring of degus. Apical elongation appeared to develop before coronal elongation and when cheek teeth malocclusion occurred, prognosis for recovery of dental disease was poor

    Prevalence of dental disorders in degus and evaluation of diagnostic methods to determine dental disease and its prognosis

    No full text
    Degus (Octodon degus) are prone to develop dental disease with deleterious health effects. The two studies reported here aimed to determine the prevalence of dental disorders in degus and to identify and evaluate diagnostic tools for determination of prognosis of these disorders. In study A, health data from 225 degus at AAP, Rescue Center for Exotic Animals in the Netherlands, were collated and the prevalence of dental disorders and differences in sex and age at clinical onset of symptoms associated with dental disorders were described. The prevalence was 34.7 per cent and higher (P<0.01) in males than in females. The occurrence of cheek teeth malocclusion was highly positively (P<0.0001) correlated to mortality. In study B, 36 skulls were examined by macroscopic evaluation, radiography and histology. Additionally, the calcium:phosphorus (Ca:P) of mandibular bone in degus with and without dental disorders were determined. There was no significant (P=0.10) difference in Ca:P between the two groups. Quantifying mandibular apical cheek teeth elongation via macroscopic evaluation was highly correlated (P<0.01) to the results obtained via radiography. Examination for apical elongation by palpation and diagnostic imaging should be included in routine health monitoring of degus. Apical elongation appeared to develop before coronal elongation and when cheek teeth malocclusion occurred, prognosis for recovery of dental disease was poor

    Prevalence of dental disorders in degus and evaluation of diagnostic methods to determine dental disease and its prognosis

    No full text
    Degus (Octodon degus) are prone to develop dental disease with deleterious health effects. The two studies reported here aimed to determine the prevalence of dental disorders in degus and to identify and evaluate diagnostic tools for determination of prognosis of these disorders. In study A, health data from 225 degus at AAP, Rescue Center for Exotic Animals in the Netherlands, were collated and the prevalence of dental disorders and differences in sex and age at clinical onset of symptoms associated with dental disorders were described. The prevalence was 34.7 per cent and higher (

    Prevalence of dental disorders in degus and evaluation of diagnostic methods to determine dental disease and its prognosis

    No full text
    Degus (Octodon degus) are prone to develop dental disease with deleterious health effects. The two studies reported here aimed to determine the prevalence of dental disorders in degus and to identify and evaluate diagnostic tools for determination of prognosis of these disorders. In study A, health data from 225 degus at AAP, Rescue Center for Exotic Animals in the Netherlands, were collated and the prevalence of dental disorders and differences in sex and age at clinical onset of symptoms associated with dental disorders were described. The prevalence was 34.7 per cent and higher (

    Population genetics, invasion pathways and public health risks of the raccoon and its roundworm Baylisascaris procyonisin northwestern Europe

    Full text link
    peer reviewedThe geographic range of the zoonotic raccoon roundworm (Baylisascaris procyonis) is expanding together with the range of its host, the raccoon (Procyon lotor). This creates a new public health risk in parts of Europe where this parasite was previously absent. In the Netherlands, a raccoon population is becoming established and incidental findings of B. procyonis have been reported. To assess the risk to public health, the prevalence of B. procyonis was determined in the province of Limburg, where currently the largest Dutch raccoon population is present, as well as in the adjoining region of southern Belgium. Furthermore, genetic methods were employed to assess invasion pathways of both the raccoon and B. procyonisto aid in the development of control measures. Macroscopic analysis of intestinal content and testing of faecal samples were performed to detect B. procyonis adults and eggs. The population genetics of both B. procyonis and its raccoon host were analysed using samples from central and northwestern Europe. B. procyonis was found in 14/23 (61%, 95% CI: 41%–78%) raccoons from Limburg, but was not detected in 50 Belgian raccoons. Genetic analyses showed that the majority of the Dutch raccoons and their roundworms were introduced through ex-captive individuals. As long as free-living raccoon populations originate from captivity, population control methods may be pursued. However, natural dispersal from the border regions will complicate prolonged population control. To reduce the public health risk posed by B. procyonis, public education to increase awareness and adapt behaviour towards raccoons is ke
    corecore