54 research outputs found

    Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control

    Get PDF
    We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach

    OpenSAFELY: The impact of COVID‐19 on azathioprine, leflunomide and methotrexate monitoring, and factors associated with change in monitoring rate

    Get PDF
    Aims The COVID-19 pandemic created unprecedented pressure on healthcare services. This study investigates whether disease-modifying antirheumatic drug (DMARD) safety monitoring was affected during the COVID-19 pandemic. Methods A population-based cohort study was conducted using the OpenSAFELY platform to access electronic health record data from 24.2 million patients registered at general practices using TPP's SystmOne software. Patients were included for further analysis if prescribed azathioprine, leflunomide or methotrexate between November 2019 and July 2022. Outcomes were assessed as monthly trends and variation between various sociodemographic and clinical groups for adherence with standard safety monitoring recommendations. Results An acute increase in the rate of missed monitoring occurred across the study population (+12.4 percentage points) when lockdown measures were implemented in March 2020. This increase was more pronounced for some patient groups (70–79 year-olds: +13.7 percentage points; females: +12.8 percentage points), regions (North West: +17.0 percentage points), medications (leflunomide: +20.7 percentage points) and monitoring tests (blood pressure: +24.5 percentage points). Missed monitoring rates decreased substantially for all groups by July 2022. Consistent differences were observed in overall missed monitoring rates between several groups throughout the study. Conclusion DMARD monitoring rates temporarily deteriorated during the COVID-19 pandemic. Deterioration coincided with the onset of lockdown measures, with monitoring rates recovering rapidly as lockdown measures were eased. Differences observed in monitoring rates between medications, tests, regions and patient groups highlight opportunities to tackle potential inequalities in the provision or uptake of monitoring services. Further research should evaluate the causes of the differences identified between groups

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Biological applications of Raman spectroscopy, Vols 1 & 2

    No full text

    Spectroscopy of Biological Systems

    No full text
    xxii,547 hal,;ill.;25c

    Spectroscopy Of Advanced Materials Volume 19

    No full text
    xix,405 hal,;ill,;22 c
    corecore