21 research outputs found

    An experimental demonstration of single photon nonlocality

    Full text link
    In this letter we experimentally implement a single photon Bell test based on the ideas of S. Tan et al. [Phys. Rev. Lett., vol. 66, 252 (1991)] and L. Hardy [Phys. Rev. Lett.,vol. 73, 2279 (1994)]. A double heterodyne measurement is used to measure correlations in the Fock space spanned by zero and one photons. Local oscillators used in the correlation measurement are distributed to two observers by co-propagating it in an orthogonal polarization mode. This method eliminates the need for interferometrical stability in the setup, consequently making it a robust and scalable method.Comment: 4 pages, 3 figures, revtex4 forma

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    Detecting magnetically guided atoms with an optical cavity

    Full text link
    We show that a low finesse cavity can be efficient for detecting neutral atoms. The low finesse can be compensated for by decreasing the mode waist of the cavity. We have used a near concentric resonator with a beam waist of 12μ\mum and a finesse of only 1100 to detect magnetically guided Rb atoms with a detection sensitivity of 0.1 atom in the mode volume. For future experiments on single atom detection and cavity QED applications, it should be very beneficial to use miniaturized optical resonator integrated on atom chips.Comment: To appear in Optics Letter

    A simple integrated single-atom detector

    Full text link
    We present a reliable and robust integrated fluorescence detector capable of detecting single atoms. The detector consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multimode fiber to collect the fluorescence. Both are mounted in lithographically defined SU-8 holding structures on an atom chip. Rb87 atoms propagating freely in a magnetic guide are detected with an efficiency of up to 66%, and a signal-to-noise ratio in excess of 100 is obtained for short integration times.Comment: 3 pages, 3 figure

    Quantum limits on phase-shift detection using multimode interferometers

    Get PDF
    Fundamental phase-shift detection properties of optical multimode interferometers are analyzed. Limits on perfectly distinguishable phase shifts are derived for general quantum states of a given average energy. In contrast to earlier work, the limits are found to be independent of the number of interfering modes. However, the reported bounds are consistent with the Heisenberg limit. A short discussion on the concept of well-defined relative phase is also included.Comment: 6 pages, 3 figures, REVTeX, uses epsf.st

    Multi Mode Interferometer for Guided Matter Waves

    Get PDF
    We describe the fundamental features of an interferometer for guided matter waves based on Y-beam splitters and show that, in a quasi two-dimensional regime, such a device exhibits high contrast fringes even in a multi mode regime and fed from a thermal source.Comment: Final version (accepted to PRL

    Atom Chips

    Get PDF
    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems
    corecore