1,110 research outputs found

    Purification and quantification of recombinant Epstein-Barr viral glycoproteins gp350/220 from Chinese hamster ovary cells

    Get PDF
    Truncated Epstein-Barr virus (EBV) membrane antigen gp350/220 (EBV-MA) lacking the membrane anchor was expressed and secreted into the medium of recombinant Chinese hamster ovary cells that had been cultured in Plasmapur hollow-fibre modules using defined serum-free medium. The EBV-MA in the medium was concentrated by 70% (w/v) ammonium sulphate precipitation and subsequently purified by immunoaffinity chromatography using an anti-EBV-MA (EBV.0T6) monoclonal antibody (mAb) column. Adsorbed antigen was eluted with 3 M MgCl2 in phosphate-buffered saline, concentrated by Mono Q anion-exchange chromatography and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, silver staining and Western blotting using EBV-positive serum and anti-EBV-MA specific mAbs. Monospecific polyclonal rabbit antibodies against the purified EBV-MA were raised and purified by protein G affinity chromatography. For the measurement of EBV-MA antigen levels a sandwich enzyme-linked immunosorbent assay using rabbit polyclonal antibodies and a horseradish peroxidase-conjugated anti-MA mAb was developed having a detection level of 10 ng/ml

    Mask-based dual-axes tomoholography using soft x-rays

    Get PDF
    We explore tomographic mask-based Fourier transform x-ray holography with respect to the use of a thin slit as a reference wave source. This imaging technique exclusively uses the interference between the waves scattered by the object and the slit simplifying the experimental realization and ensuring high data quality. Furthermore, we introduce a second reference slit to rotate the sample around a second axis and to record a dual-axes tomogram. Compared to a single-axis tomogram, the reconstruction artifacts are decreased in accordance with the reduced missing data wedge. Two demonstration experiments are performed where test structures are imaged with a lateral resolution below 100 nm

    Moregrasp: Restoration of Upper Limb Function in Individuals with High Spinal Cord Injury by Multimodal Neuroprostheses for Interaction in Daily Activities

    Get PDF
    The aim of the MoreGrasp project is to develop a noninvasive, multimodal user interface including a brain-computer interface (BCI) for intuitive control of a grasp neuroprosthesis to support individuals with high spinal cord injury (SCI) in everyday activities. We describe the current state of the project, including the EEG system, preliminary results of natural movements decoding in people with SCI, the new electrode concept for the grasp neuroprosthesis, the shared control architecture behind the system and the implementation of a user-centered design

    North to south: ecosystem features determine seagrass community response to sea otter foraging

    Get PDF
    We compared sea otter recovery in California (CA) and British Columbia (BC) to determine how key ecosystem properties shape top-down effects in seagrass communities. Potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds that we examined include the role of coastline complexity and environmental stress on sea otter effects. In BC, we found greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, was less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supported the hypothesis that sea otter foraging pressure is currently reduced in more northern latitudes. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future re- search

    Nanoscale Imaging of High‐Field Magnetic Hysteresis in Meteoritic Metal Using X‐Ray Holography

    Get PDF
    Stable paleomagnetic information in meteoritic metal is carried by the “cloudy zone”: ~1–10 Όm‐wide regions containing islands of ferromagnetic tetrataenite embedded in a paramagnetic antitaenite matrix. Due to their small size and high coercivity (theoretically up to ~2.2 T), the tetrataenite islands carry very stable magnetic remanence. However, these characteristics also make it difficult to image their magnetic state with the necessary spatial resolution and applied magnetic field. Here, we describe the first application of X‐ray holography to image the magnetic structure of the cloudy zone of the Tazewell IIICD meteorite with spatial resolution down to ~40 nm and in applied magnetic fields up to ±1.1 T, sufficient to extract high‐field hysteresis data from individual islands. Images were acquired as a function of magnetic field applied both parallel and perpendicular to the surface of a ~100 nm‐thick slice of the cloudy zone. Broad distributions of coercivity are observed, including values that likely exceed the maximum applied field. Horizontal offsets in the hysteresis loops indicate an interaction field distribution with half width of ~100 mT between the islands in their room temperature single‐domain state, providing a good match to first‐order reversal curve diagrams. The results suggest that future models of remanence acquisition in the cloudy zone should take account of strong interactions in order to extract quantitative estimates of the paleofield.EC/FP7/320750/EU/Nanopaleomagnetism: a multiscale approach to paleomagnetic analysis of geological materials/NanoPaleoMagEC/FP7/312284/EU/Coordinated Access to Lightsources to Promote Standards and Optimization/CALIPS

    Field-free deterministic ultra fast creation of skyrmions by spin orbit torques

    Full text link
    Magnetic skyrmions are currently the most promising option to realize current-driven magnetic shift registers. A variety of concepts to create skyrmions were proposed and demonstrated. However, none of the reported experiments show controlled creation of single skyrmions using integrated designs. Here, we demonstrate that skyrmions can be generated deterministically on subnanosecond timescales in magnetic racetracks at artificial or natural defects using spin orbit torque (SOT) pulses. The mechanism is largely similar to SOT-induced switching of uniformly magnetized elements, but due to the effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not required. Our observations provide a simple and reliable means for skyrmion writing that can be readily integrated into racetrack devices

    Breaking Traditions:An Isotopic Study on the Changing Funerary Practices in the Dutch Iron Age (800-12 bc)

    Get PDF
    Urnfields in the Dutch river area were replaced by cemeteries with a mixture of cremation and inhumation graves around the sixth century bc. This study provides the first biogeochemical evidence that the Iron Age communities were heterogeneous in terms of geological origins. The high percentage of non-locally born individuals (~48%) supports the hypothesis that the change in burial practice was the result of the influx of foreign people, who were being allowed to keep their own burial customs, whereas some of the local inhabitants adapted the burial rites of foreign cultures, leading to a heterogeneous burial rite for some centuries
    • 

    corecore