331 research outputs found
Fabry-Perot Measurements of the Dynamics of Globular Cluster Cores: M15 (NGC~7078)
We report the first use of the Rutgers Imaging Fabry-Perot Spectrophotometer
to study the dynamics of the cores of globular clusters. We have obtained
velocities for cluster stars by tuning the Fabry-Perot to take a series of
narrow-band images at different wavelengths across one of the Na D (5890 AA)
absorption lines. Measuring the flux in every frame yields a short portion of
the spectrum for each star simultaneously. This proves to be a very efficient
method for obtaining accurate stellar velocities; in crowded regions we are
able to measure hundreds of velocities in 3-4 hours of observing time. We have
measured velocities with uncertainties of less than 5 km/s for 216 stars within
1.5' of the center of the globular cluster M15 (NGC 7078). The paper is a
uuencoded compressed postscript file
Team Mediation: An Interdisciplinary Model Balancing Mediation in the Matrix
The Team Mediation model proposed in this article lays a foundation for the resolution of civil disputes utilizing an interdisciplinary team, which will attempt to balance mediation styles in a team dynamic in such a way as to provide the parties with a greater chance of success. Such a model will likely be met with skepticism and, as with any new idea, its benefits will need to be demonstrated to overtake the skeptics
Preacher Characterizations in Harriet Beecher Stowe and Margaret Deland
Department of Agricultural Economic
The Open Cluster NGC 7789: I. Radial Velocities for Giant Stars
A total of 597 radial-velocity observations for 112 stars in the ~1.6 Gyr old
open cluster NGC 7789 have been obtained since 1979 with the radial velocity
spectrometer at the Dominion Astrophysical Observatory. The mean cluster radial
velocity is -54.9 +/- 0.12 km/s and the dispersion is 0.86 km/s, from 50
constant-velocity stars selected as members from this radial-velocity study and
the proper motion study of McNamara and Solomon (1981). Twenty-five stars (32%)
among 78 members are possible radial-velocity variable stars, but no orbits are
determined because of the sparse sampling. Seventeen stars are radial-velocity
non-members, while membership estimates of six stars are uncertain.
There is a hint that the observed velocity dispersion falls off at large
radius. This may due to the inclusion of long-period binaries preferentially in
the central area of the cluster. The known radial-velocity variables also seem
to be more concentrated toward the center than members with constant velocity.
Although this is significant at only the 85% level, when combined with similar
result of Raboud and Mermilliod (1994) for three other clusters, the data
strongly support the conclusion that mass segregation is being detected.Comment: 16 pages (including 3 figures) and 3 table
Revisiting the Rigidly Rotating Magnetosphere model for sigma Ori E. I. Observations and Data Analysis
We have obtained 18 new high-resolution spectropolarimetric observations of
the B2Vp star sigma Ori E with both the Narval and ESPaDOnS
spectropolarimeters. The aim of these observations is to test, with modern
data, the assumptions of the Rigidly Rotating Magnetosphere (RRM) model of
Townsend & Owocki (2005), applied to the specific case of sigma Ori E by
Townsend et al. (2005). This model includes a substantially offset dipole
magnetic field configuration, and approximately reproduces previous
observational variations in longitudinal field strength, photometric
brightness, and Halpha emission. We analyze new spectroscopy, including H I, He
I, C II, Si III and Fe III lines, confirming the diversity of variability in
photospheric lines, as well as the double S-wave variation of circumstellar
hydrogen. Using the multiline analysis method of Least-Squares Deconvolution
(LSD), new, more precise longitudinal magnetic field measurements reveal a
substantial variance between the shapes of the observed and RRM model
time-varying field. The phase resolved Stokes V profiles of He I 5876 A and
6678 A lines are fit poorly by synthetic profiles computed from the magnetic
topology assumed by Townsend et al. (2005). These results challenge the offset
dipole field configuration assumed in the application of the RRM model to sigma
Ori E, and indicate that future models of its magnetic field should also
include complex, higher-order components.Comment: 13 pages, 8 figures. Accepted for publication in MNRA
- …