3 research outputs found

    Haplotype-Specific Expression Analysis of MHC Class II Genes in Healthy Individuals and Rheumatoid Arthritis Patients

    No full text
    HLA-DRB1 alleles have been associated with several autoimmune diseases. For anti-citrullinated protein antibody positive rheumatoid arthritis (RA), HLA-DRB1 shared epitope (SE) alleles are the major genetic risk factors. In order to study the genetic regulation of major histocompatibility complex (MHC) Class II gene expression in immune cells, we investigated transcriptomic profiles of a variety of immune cells from healthy individuals carrying different HLA-DRB1 alleles. Sequencing libraries from peripheral blood mononuclear cells, CD4+ T cells, CD8+ T cells, and CD14+ monocytes of 32 genetically pre-selected healthy female individuals were generated, sequenced and reads were aligned to the standard reference. For the MHC region, reads were mapped to available MHC reference haplotypes and AltHapAlignR was used to estimate gene expression. Using this method, HLA-DRB and HLA-DQ were found to be differentially expressed in different immune cells of healthy individuals as well as in whole blood samples of RA patients carrying HLA-DRB1 SE-positive versus SE-negative alleles. In contrast, no genes outside the MHC region were differentially expressed between individuals carrying HLA-DRB1 SE-positive and SE-negative alleles, thus HLA-DRB1 SE alleles have a strong cis effect on gene expression. Altogether, our findings suggest that immune effects associated with different allelic forms of HLA-DR and HLA-DQ may be associated not only with differences in the structure of these proteins, but also with differences in their expression levels.</p&gt

    T-cell transcriptomics from peripheral blood highlights differences between polymyositis and dermatomyositis patients

    No full text
    Abstract Background Polymyositis (PM) and dermatomyositis (DM) are two distinct subgroups of idiopathic inflammatory myopathies, a chronic inflammatory disorder clinically characterized by muscle weakness and inflammatory cell infiltrates in muscle tissue. In PM, a major component of inflammatory cell infiltrates is CD8+ T cells, whereas in DM, CD4+ T cells, plasmacytoid dendritic cells, and B cells predominate. In this study, with the aim to differentiate involvement of CD4+ and CD8+ T-cell subpopulations in myositis subgroups, we investigated transcriptomic profiles of T cells from peripheral blood of patients with myositis. Methods Total RNA was extracted from CD4+ T cells (PM = 8 and DM = 7) and CD8+ T cells (PM = 4 and DM = 5) that were isolated from peripheral blood mononuclear cells via positive selection using microbeads. Sequencing libraries were generated using the Illumina TruSeq Stranded Total RNA Kit and sequenced on an Illumina HiSeq 2500 platform, yielding about 50 million paired-end reads per sample. Differential gene expression analyses were conducted using DESeq2. Results In CD4+ T cells, only two genes, ANKRD55 and S100B, were expressed significantly higher in patients with PM than in patients with DM (false discovery rate [FDR] < 0.05, model adjusted for age, sex, HLA-DRB1 *03 status, and RNA integrity number [RIN]). On the contrary, in CD8+ T cells, 176 genes were differentially expressed in patients with PM compared with patients with DM. Of these, 44 genes were expressed significantly higher in CD8+ T cells from patients with PM, and 132 genes were expressed significantly higher in CD8+ T cells from patients with DM (FDR < 0.05, model adjusted for age, sex, and RIN). Gene Ontology analysis showed that genes differentially expressed in CD8+ T cells are involved in lymphocyte migration and regulation of T-cell differentiation. Conclusions Our data strongly suggest that CD8+ T cells represent a major divergence between PM and DM patients compared with CD4+ T cells. These alterations in the gene expression in T cells from PM and DM patients might advocate for distinct immune mechanisms in these subphenotypes of myositis
    corecore