54 research outputs found
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
A Multiresidue Method for the Analysis of Carbamate and Urea Pesticides from Soils by Microwave-Assisted Extraction and Liquid Chromatography with Photodiode Array Detection
Growth dynamics and yield of melon as influenced by nitrogen fertilizer
Nitrogen (N) is an important nutrient for melon (Cucumis melo L.) production. However there is scanty information about the amount necessary to maintain an appropriate balance between growth and yield. Melon vegetative organs must develop sufficiently to intercept light and accumulate water and nutrients but it is also important to obtain a large reproductive-vegetative dry weight ratio to maximize the fruit yield. We evaluated the influence of different N amounts on the growth, production of dry matter and fruit yield of a melon 'Piel de sapo' type. A three-year field experiment was carried out from May to September. Melons were subjected to an irrigation depth of 100% crop evapotranspiration and to 11 N fertilization rates, ranging 11 to 393 kg ha-1 in the three years. The dry matter production of leaves and stems increased as the N amount increased. The dry matter of the whole plant was affected similarly, while the fruit dry matter decreased as the N amount was increased above 112, 93 and 95 kg ha-1, in 2005, 2006 and 2007, respectively. The maximum Leaf Area Index (LAI), 3.1, was obtained at 393 kg ha-1 of N. The lowest N supply reduced the fruit yield by 21%, while the highest increased the vegetative growth, LAI and Leaf Area Duration (LAD), but reduced yield by 24% relative to the N93 treatment. Excessive applications of N increase vegetative growth at the expense of reproductive growth. For this melon type, rates about 90-100 kg ha-1 of N are sufficient for adequate plant growth, development and maximum production. To obtain fruit yield close to the maximum, the leaf N concentration at the end of the crop cycle should be higher than 19.5 g kg-1.O nitrogênio (N) é um nutriente importante para a produção de melão (Cucumis melo L.), porém existe pouca informação sobre a quantidade necessária para se obter um balanço entre o crescimento e a produtividade. Os órgãos vegetativos do melão precisam se desenvolver suficientemente para interceptor luz, acumular água e nutrients, mas também é importante alcançar uma grande relação de massa seca produtiva-vegetativa para maximizar a produção de frutos. Investigou-se a influência de quantidades de N no crescimento, na produção de matéria seca e na produtividade do melão tipo 'Pele de sapo'. Foi conduzido experimento com três anos de duração, de maio a setembro, com irrigações de 100% da evapotranspiração e 11 doses de adubação de N, no intervalo de 11 a 393 kg ha-1 em três anos. A produção de massa seca de folhas e caules aumentou com o aumento das doses de N. A matéria seca da planta toda foi afetada de maneira semelhante, enquanto a dos frutos decresceu com o aumento de N acima de 112, 93 e 95 kg ha-1, em 2005, 2006 e 2007, respectivamente. O índice de área foliar máxima (LAI) mais aulto (3.1) foi obtido com a dose de 393 kg N ha-1de N. A dose mais baixa de N reduziu a produtividade de frutos em 21%, enquanto a dose mais alta aumentou o crescimento vegetative, LAI e a duração de área foliar (LAD), mas reduziu a produtividade em 24% em relação ao tratamento N93. Aplicações excessivas de N aumentam o crescimento vegetativo às expensas do crescimento vegetativo. Para este tipo de melão, doses da ordem de 90-100 kg ha-1 de N são suficientes para crescimento adequado e produção máxima. Para obter produções próximas ao máximo, a concentração de N na folha no final do ciclo da cultura não deve ser maior que 19.5 g kg-1
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Mineral deficiency and the presence of Pinus sylvestris on mires during the mid- to late Holocene: Palaeoecological data from Cadogan's Bog, Mizen Peninsula, Co. Cork, southwest Ireland
Pollen records across parts of Ireland, England and northern Scotland show a dramatic collapse in Pinus pollen percentages at approximately 4000 radiocarbon years BP. This phenomenon has attracted much palaeoecological interest and several hypotheses have been put forward to account for this often synchronous and rapid reduction in pine from mid-Holocene woodland. Explanations for the 'pine decline' include prehistoric human activity, climatic change, in particular a substantial increase in precipitation resulting in increased mire wetness, and airborne pollution associated with the deposition of tephra. Hitherto, one largely untested hypothesis is that mineral deficiency could adversely affect pine growth and regeneration on mire surfaces. The discovery of pine-tree remains (wood pieces, stumps and trunks) within a peat located at Cadogan's Bog on the Mizen Peninsula, southwest Ireland, provided an opportunity to investigate the history of Pinus sylvestris and also to assess the importance of mineral nutrition in maintaining pine growth on mires. Pollen, plant macrofossils, microscopic charcoal and geochemical data are presented from a radiocarbon dated monolith extracted from this peat together with tree ring-width data and radiocarbon dated age estimates from subfossil wood. Analyses of these data suggest that peat accumulation commenced at the site around 6000 years BP when pine was the dominant local tree. Thereafter Pinus pollen percentages diminish in two stages, with the second decline taking place around 4160 ± 50 years BP. Concomitant with this decline in Pinus pollen, there is a noticeable, short-lived increase in wet-loving mire taxa and a decrease in the concentration of phosphorus, potassium, magnesium, calcium, sodium, iron and zinc. These results suggest that increased mire surface wetness, possibly the result of a change in climate, created conditions unsuitable for pine growth c. 4000 years BP. Mire surface wetness, coupled with a period of associated nutrient deficiency, appears to be a possible explanation for a lack of subsequent pine-seedling establishment for most of the later Holocene
The Identification of the Spoor and Dung of East African Mammals. Part 1, Antelopes
Volume: 22Start Page: 107End Page: 11
A decision support system improves the interpretation of myocardial perfusion imaging
PURPOSE: The aim of this study was to investigate the influence of a computer-based decision support system (DSS) on performance and inter-observer variability of interpretations regarding ischaemia and infarction in myocardial perfusion scintigraphy (MPS). METHODS: Seven physicians independently interpreted 97 MPS studies, first without and then with the advice of a DSS. Four physicians had long experience and three had limited experience in the interpretation of MPS. Each study was interpreted regarding myocardial ischaemia and infarction in five myocardial regions. The patients had undergone a gated MPS using a 2-day stress/gated rest (99m)Tc sestamibi protocol. The gold standard used was the interpretations made by one experienced nuclear medicine specialist on the basis of all available clinical and image information. RESULTS: The sensitivity for ischaemia of the seven readers increased from 81% without the DSS to 86% with the DSS (p = 0.01). The increase in sensitivity was higher for the three inexperienced physicians (9%) than for the four experienced physicians (2%). There was no significant change in specificity between the interpretations. The interpretations of ischaemia made with the advice of the DSS showed less inter-observer variability than those made without advice. CONCLUSION: This study shows that a DSS can improve performance and reduces the inter-observer variability of interpretations in myocardial perfusion imaging. Both experienced and, especially, inexperienced physicians can improve their interpretation with the advice from such a system
The function in vitro of macrophages from the intestinal mucosa of patients with Crohn's disease: An association between chemotactic migration and granulomata
A rare case of preputial calculi in a child with balanitis xerotica obliterans: A short communication
- …
