84 research outputs found

    Plate tectonic cycling modulates Earth's 3 He/ 22 Ne ratio

    Get PDF
    The ratio of 3He and 22Ne varies throughout the mantle. This observation is surprising because 3He and 22Ne are not produced in the mantle, are highly incompatible during mantle melting, and are not recycled back into the mantle by subduction of oceanic sediment or basaltic crust. Our new compilation yields average 3He/22Ne ratios of 7.5 ± 1.2 and 3.5 ± 2.4 for mid-ocean ridge basalt (MORB) mantle and ocean island basalt (OIB) mantle sources respectively. The low 3He/22Ne of OIB mantle approaches planetary precursor 3He/22Ne values; ∼1 for chondrites and ∼1.5 for the solar nebula. The high 3He/22Ne of the MORB mantle is not similar to any planetary precursor, requiring a mechanism for fractionating He from Ne in the mantle and suggesting isolation of distinct mantle reservoirs throughout geologic time. New experimental results reported here demonstrate that He and Ne diffuse at rates differing by one or more orders of magnitude at relevant temperatures in mantle materials. We model the formation of a MORB mantle with an elevated 3He/22Ne ratio through kinetically modulated chemical exchange between dunite channel-hosted basaltic liquids and harzburgite wallrock beneath mid-ocean ridges. Over timescales relevant to mantle upwelling beneath spreading centers, He may diffuse tens to hundreds of meters into wallrock while Ne is effectively immobile, producing a mantle lithosphere regassed with respect to He and depleted with respect to Ne, with a net elevated 3He/22Ne. Subduction of high 3He/22Ne mantle lithosphere throughout geologic time would generate a MORB source with high 3He/22Ne. Mixing models suggest that to preserve a high 3He/22Ne reservoir, MORB mantle mixing timescales must be on the order of hundreds of millions of years or longer, that mantle convection has not been layered about the transition zone for most of geologic time, and that Earth's convecting mantle has lost at least 96% of its primordial volatile elements. The most depleted, highest 3He/22Ne mantle may be best preserved in the lower mantle where relatively high viscosities impede mechanical mixing

    High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite

    Get PDF
    High-porosity dunite channels are important pathways for melt migration in the mantle. To better understand the first order characteristics of the high-porosity melt channel and its associated peridotite lithologies in an upwelling mantle, we conducted high-resolution numerical simulations of reactive dissolution in a deformable porous medium. Results from this study show that high-porosity dunite channels are transient and shallow parts of pathways for melt migration in the mantle. The lower parts of a high-porosity channel are harzburgite and lherzolite. The size and dimension of dunite channels depend on the amplitude of lateral porosity variations at the base of the melting column, whereas the depth of dunite channel initiation depends on the melt flux entering the channel from below. Compaction and interaction between compaction and dissolution play a central role in distributing melt in the dunite channel. A wide orthopyroxene-free dunite channel may contain two or more high-porosity melt channels. A primary high-porosity melt channel developed in the deep mantle may excite secondary melt channels in the shallow part of the melting column. The spatial relations among the high-porosity melt channel and its associated lithologies documented in this study may shed new light on a number of field, petrological, and geochemical observations related to melt migration in the mantle. Citation: Liang, Y., A. Schiemenz, M. A. Hesse, E. M. Parmentier, and J. S. Hesthaven (2010), High-porosity channels for melt migration in the mantle: Top is the dunite and bottom is the harzburgite and lherzolite, Geophys. Res. Lett., 37, L15306, doi:10.1029/2010GL044162

    Development of Reacted Channel During Flow of CO2 Rich Water Along a Cement Fracture

    Get PDF
    AbstractLab scale experiments were performed to characterize how coupling between reaction and flow affect time-dependent flux of CO2-rich water along leaky wells. The core flow system applies confining stress to a cement core with a single tensile fracture while CO2-rich water is injected at constant rate and elevated pore pressure. Results show no significant variation in pressure differential, despite the development of a texturally distinct calcium depleted channel along the fracture surfaces which is bounded by thin rims of precipitation. Silicon rich material remains in the channel and prevents wormhole development and large increases in aperture. Implications for time-dependent CO2 leakage are that even with high fluid flux, the leak does not get appreciably worse

    Electron inflow velocities and reconnection rates at earth's magnetopause and magnetosheath

    Get PDF
    Electron inflow and outflow velocities during magnetic reconnection at and near the dayside magnetopause are measured using satellites from NASA's Magnetospheric Multiscale (MMS) mission. A case study is examined in detail, and three other events with similar behavior are shown, with one of them being a recently published electron-only reconnection event in the magnetosheath. The measured inflow speeds of 200–400 km/s imply dimensionless reconnection rates of 0.05–0.25 when normalized to the relevant electron Alfvén speed, which are within the range of expectations. The outflow speeds are about 1.5–3 times the inflow speeds, which is consistent with theoretical predictions of the aspect ratio of the inner electron diffusion region. A reconnection rate of 0.04 ± 25% was obtained for the case study event using the reconnection electric field as compared to the 0.12 ± 20% rate determined from the inflow velocity.publishedVersio

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022
    • …
    corecore