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Abstract 

 

The ratio of 3He and 22Ne varies throughout the mantle. This observation is surprising because 

3He and 22Ne are not produced in the mantle, are highly incompatible during mantle melting, and 

are not recycled back into the mantle by subduction of oceanic sediment or basaltic crust. Our 

new compilation yields average 3He/22Ne ratios of 7.5±1.2 and 3.5±2.4 for mid-ocean ridge 

basalt (MORB) mantle and ocean island basalt (OIB) mantle sources respectively. The low 

3He/22Ne of OIB mantle approaches planetary precursor 3He/22Ne values; ~1 for chondrites and 

~1.5 for the solar nebula. The high 3He/22Ne of the MORB mantle is not similar to any planetary 

precursor, requiring a mechanism for fractionating He from Ne in the mantle and suggesting 

isolation of distinct mantle reservoirs throughout geologic time. New experimental results 

reported here demonstrate that He and Ne diffuse at rates differing by one or more orders of 

magnitude at relevant temperatures in mantle materials. We model the formation of a MORB 

mantle with an elevated 3He/22Ne ratio through kinetically modulated chemical exchange 

between dunite channel-hosted basaltic liquids and harzburgite wallrock beneath mid-ocean 

ridges. Over timescales relevant to mantle upwelling beneath spreading centers, He may diffuse 

tens to hundreds of meters into wallrock while Ne is effectively immobile, producing a mantle 

lithosphere regassed with respect to He and depleted with respect to Ne, with a net elevated 

3He/22Ne. Subduction of high 3He/22Ne mantle lithosphere throughout geologic time would 

generate a MORB source with high 3He/22Ne. Mixing models suggest that to preserve a high 

3He/22Ne reservoir, MORB mantle mixing timescales must be on the order of hundreds of 

millions of years or longer, that mantle convection has not been layered about the transition zone 

for most of geologic time, and that Earth’s convecting mantle has lost at least 96% of its 
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primordial volatile elements. The most depleted, highest 3He/22Ne mantle may be best preserved 

in the lower mantle where relatively high viscosities impede mechanical mixing. 

 

Keywords: 3He/22Ne; noble gas; dunite channel, kinetic fractionation; diffusion; mantle 

lithosphere 
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1. Introduction 

3He and 22Ne are not produced in the mantle or fractionated by partial melting, and 

neither isotope is recycled back into the mantle by subduction of oceanic basalt or sediment (e.g., 

Heber et al., 2007; Hilton et al., 2002; Jackson et al., 2013a; Staudacher and Allègre, 1988; 

Tucker and Mukhopadhyay, 2014). Thus, it is a surprise that large 3He/22Ne variations exist 

within mantle-derived rocks and that by inference; the mantle has a net elevated 3He/22Ne ratio 

compared to volatile-rich planetary precursor materials such as the solar nebula, chondritic 

meteorites, iron meteorites and achondrites (Fig. 1, Graham, 2002; Harper and Jacobsen, 1996; 

Honda and McDougall, 1998; Ott, 2002). 3He/22Ne ratios may preserve a unique record of 

mantle evolution, provided mechanisms for fractionating He from Ne in the mantle are 

understood.  

Previous work (Graham 2002; Honda and McDougall, 1998) and the updated compilation 

presented in this manuscript (Fig. 1; Supplementary Table 1) show that the mid-ocean ridge 

basalt (MORB) mantle source has distinctly higher 3He/22Ne compared to ocean island basalt 

(OIB) sources (7.5±1.2 and 3.5±2.4 respectively; see the electronic supplement for a description 

of our methods). The low 3He/22Ne of OIBs approaches chondritic (~1) and solar nebula values 

(~1.5), whereas the high 3He/22Ne of the MORB mantle is not similar to solar sources or any 

known family of meteorites. Such a high 3He/22Ne ratio for MORB mantle requires a mechanism 

for fractionating He from Ne in the mantle and suggests isolation of distinct mantle reservoirs 

during Earth’s evolution.  

The current model for forming a mantle heterogeneous in 3He/22Ne invokes fractionation 

from magma ocean degassing (Honda and McDougall, 1998; Tucker and Mukhopadhyay, 2014). 

He is ~2× more soluble than Ne in peridotitic melt (e.g., Iacono-Marizano et al., 2010); 
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degassing a magma ocean to form a primitive atmosphere would elevate the 3He/22Ne of the 

magma ocean. In a best-case scenario under equilibrium conditions, a degassing event roughly 

doubles the 3He/22Ne of the magma ocean. Subsequent degassing events can only further 

fractionate mantle 3He/22Ne ratios if there is atmospheric blow-off prior to the next period of 

magma ocean-atmosphere equilibration.  

Primordial sources of He and Ne have 3He/22Ne ratios of ~1.5 (e.g., Harper and Jacobsen, 

1996; Mahaffy et al., 1998; Ott, 2002; Trieloff and Kunz, 2005). Thus, accounting for 3He/22Ne 

ratios above 10 (e.g., Fig. 1, Graham, 2002; Honda and McDougall, 1998; Tucker and 

Mukhopadhyay, 2014) requires >2 magma ocean degassing events affecting the MORB mantle, 

and complete atmospheric blow-off prior to each magma ocean event. If He is rapidly lost from 

the atmosphere, as is the case today, between magma oceans, subsequent atmosphere-magma 

ocean equilibration would lead to a decreased 3He/22Ne ratio in the mantle, rather than the 

proposed increase.  

Here we explore the possibility that elevated 3He/22Ne ratios relate to diffusion kinetics of 

He and Ne. It has long been known that He, Ne, and heavier noble gases have high-temperature 

diffusivities that differ by orders of magnitude in igneous materials (e.g., Behrens, 2010; Baxter, 

2010 and references therein), providing the potential for kinetic fractionation of He from Ne in 

the mantle. The importance of kinetic fractionation for producing isotopic and trace element 

variations has been investigated previously (e.g., Albarède, 2008; Barford et al., 1999; Dygert et 

al., 2016; Hart, 1993; Hofmann and Hart, 1978; Kenyon, 1990; 1993; Spiegelman and Kenyon, 

1992). Kinetic fractionation has been invoked to explain noble gas systematics in basalts that 

may be consistent with disequilibrium melting (e.g., Burnard, 2004; Burnard et al., 2004; 

Yamamoto et al., 2009). Here, instead of focusing on mantle melts, we evaluate how differences 
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in He and Ne diffusivities can affect the compositions of mantle melting residues. We model the 

formation of an elevated and variable 3He/22Ne MORB source through kinetically modulated 

chemical exchange between dunite channel-hosted basaltic liquids and harzburgite wallrock 

beneath mid-ocean ridges. We demonstrate that kinetic fractionation of He and Ne will occur as 

basaltic liquids migrate through upwelling mantle, a process known to occur within Earth for 

billions of years. Our model predicts observed correlations between 3He/22Ne ratios and indices 

of depletion, including La/Sm, and the Rb-Sr and Sm-Nd isotope systems. It requires the entire 

high 3He/22Ne source to have fluxed through the global mid-ocean ridge system at least once, 

effective mantle mixing timescales of 0.4 Gyr or longer, and suggests that convection of the 

MORB mantle across the transition zone has dominated throughout geologic time. 

  

1.1 Melt transport in dunite channels 

Tabular bodies of olivine (dunites) are observed in ophiolites and interpreted to form a 

tree-root like network of high-porosity pathways called dunite channels. Dunite channel 

networks are thought to efficiently focus and extract mantle melts produced by adiabatic 

decompression melting beneath mid-ocean ridges (Fig. 2; Kelemen et al., 1995; 1997). 

Channelization necessarily juxtaposes dunite-hosted basaltic melts against harzburgitic melting 

residues (e.g., Liang et al. 2010; Schiemenz et al., 2010; Spiegelman et al., 2001; Spiegelman 

and Kelemen, 2003). Field observations demonstrate that dunite-hosted basaltic melts and 

adjacent harzburgite wallrock are not in chemical equilibrium (e.g., Dygert et al., 2016; Kelemen 

et al., 1992; 1995; Suhr et al., 2003), which inevitably leads to some amount of diffusive 

exchange (e.g., Burnard, 2004; Burnard et al., 2004; Kenyon, 1990; 1993; Spiegelman and 
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Kenyon, 1992). The extent of diffusive interaction between the dunite-hosted basaltic melt and 

adjacent wallrock depends on the effective diffusion rate of the element in the wallrock.  

 

2. He and Ne diffusion rates in mantle materials 

2.1 Measurements 

Helium is significantly lighter and smaller than Ne and is therefore expected to diffuse 

faster than Ne in silicate melts and minerals at mantle temperatures. Relatively high He 

diffusivity would lead to kinetic fractionation of He from Ne (and heavier noble gases) in 

harzburgite wallrock around dunite channels. Despite the clear expectation for faster He 

diffusion than Ne, reported Arrhenius relationships for He and Ne are highly scattered. 

Measurements of Ne and He diffusion rates in mantle-relevant materials are summarized in 

Figure 3; lattice diffusion in olivine is shown in Fig. 3a, diffusion in silicate glasses is shown in 

Fig. 3b, grain boundary diffusion is shown in Fig. 3c. These studies comprise a variety of 

experimental approaches including first-principles calculations (Wang et al., 2015), high-

pressure gas-soaking (Cherniak et al., 2014) and implantation degassing experiments (Cherniak 

and Watson, 2012; Cherniak et al., 2014), bulk degassing of natural and proton irradiated 

materials (Blard et al., 2008; Burnard et al., 2015; Futagami et al., 1993; Gourbet et al., 2012; 

Shuster et al., 2004; Tolstikhin et al., 2010; this study), and glass membrane (Frank et al., 1961; 

Swets et al., 1961), bubble shrinkage (Frischat and Oel, 1965; Wendler et al., 1995), and 

desorption experiments (Mulfinger and Scholze, 1962). An unrepeated preliminary experiment 

conducted at a single temperature on a superliquidus basaltic melt suggests DHe > DNe (Lux, 

1987). A recent study on CMAS glass and superliquidus melt found DHe > DAr at a temperature 

of 1300ºC, but a He diffusion rate significantly slower than previous work (Alamberti et al., 
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2018). Here we adopt an assumption common to the noble gas literature (e.g. Gonnermann and 

Mukhopadhyay, 2007; Weston et al., 2015), that Arrhenius relations for He and Ne diffusion 

rates in simple silicate glasses can be extrapolated to mantle temperatures to approximate high-

temperature diffusion in basaltic melts (green squares, Fig. 3d). 

Data summarized in Fig. 3 collectively suggest that while measured diffusion rates vary 

among references for a particular element, Ne diffuses one or more orders of magnitude more 

slowly than He in mantle minerals and melts at mantle-relevant temperatures (Fig. 3d). A notable 

exception is the study of Gourbet et al., 2012 (green line, Fig. 3a), which measured bulk 

diffusion of Ne in proton-irradiated olivine using a step-heating technique. Gourbet et al. (2012) 

observed Ne diffusion rates orders of magnitude faster than other work (Cherniak et al., 2014; 

Futagami et al., 1993), and found that Ne and He diffuse at similar rates at high temperature.  

To evaluate the discrepancy among measurements of Ne diffusion in olivine, we 

conducted a new bulk degassing experiment on a single crystal fragment from the batch of 

proton-irradiated San Carlos olivine previously investigated by Gourbet et al., 2012. We selected 

a grain with relatively few inclusions and cracks (Supplementary Figure S1), in contrast to grains 

investigated by Gourbet et al., 2012 (see their Supplementary Figure S2a). 3He and 21Ne were 

analyzed simultaneously during degassing, allowing us to directly compare their diffusivities 

throughout the experiment. Bulk degassing data were interpreted assuming a spherical geometry 

using equations presented in Fechtig and Kalbitzer (1966). Results are shown in Fig. 4 and 

Supplementary Figure S2; experimental, analytical and interpretive methods are discussed in 

detail in the Electronic Supplement. Except for some final He steps (collected after >99% 

degassing and barely above the instrumental detection limit, unfilled red circles, Fig. 4), all data 

collected while temperatures were well resolved are included in our analysis for both He and Ne. 
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The experiment yields activation energies of 122.1±5.1 kJ/mol for He and 168.6±8.8 

kJ/mol for Ne. An effective spherical olivine radius of 330µm gives Arrhenius preexponentials 

of 8.80 × 10−7−4.16×10−7
+7.89×10−7

 for He and 1.25 × 10−6−7.21×10−7
+1.70×10−6  for Ne. In that He diffuses 

significantly faster than Ne at all experimental temperatures, our results are consistent with the 

work of Futagami et al. (1993) and Cherniak et al. (2014). However, we observe high-

temperature Ne diffusion rates orders of magnitude more rapid than either of these previous 

studies (compare thick blue and magenta lines, Fig. 3a). The cause of the discrepancy is 

unknown, but it could be related to differences in analytical and/or experimental methods, data 

interpretation, or the presence of optically unobservable diffusive fast paths or multiple diffusion 

domains in the relatively large olivine crystal fragment we analyzed (e.g., cracks, c.f. Cherniak et 

al., 2014). The latter is not supported by our He data, which agree well with diffusivities given 

by other recent studies (Fig. 3a; Blard et al., 2008; Cherniak and Watson, 2012; Shuster et al., 

2004; Tolstikhin et al., 2010; Wang et al., 2015). We note that unlike prior work, our Ne 

activation energy is greater than that of He, consistent with diffusion compensation theory (e.g., 

Hoffman, 1980; Winchell 1969).  

 

2.2 Pathways for diffusive exchange between dunite channels and wallrock 

To model kinetic fractionation of He from Ne around dunite channels, we must consider 

which diffusive mechanisms produce the largest flux of noble gases into harzburgite wallrock. 

Diffusion of Ne along grain boundaries has not been measured, but recent work suggests He and 

Ar diffusion along olivine grain boundaries is slower than olivine lattice diffusion when grain 

boundary Arrhenius relations are extrapolated to mantle temperatures (Fig. 3c; Burnard et al., 

2015; Delon et al., 2018). We assume Ne behaves similarly.  
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Diffusion through a network of interconnected melt at the dunite channel-wallrock 

interface would facilitate diffusive exchange, as noble gas diffusion in melts is assumed to be ≳2 

orders of magnitude faster than in the olivine lattice (compare Figs 3b and 3a), and noble gases 

are highly soluble in melts relative to minerals (e.g., Heber et al., 2007; Jackson et al., 2013a). 

However, numerical simulations suggest the melt fraction around dunite channels may be at or 

below the “permeability threshold”, i.e., the minimum melt fraction needed to produce an 

interconnected melt network (if such a threshold exists). Melt suction into the lower reaches of 

dunite channels creates a compacting boundary layer (CBL) around channels with a very low 

melt fraction (Liang et al., 2010; Schiemenz et al., 2010), and melt-rock reaction at the dunite 

channel-wallrock interface consumes latent heat, producing a cold thermal boundary layer 

around the channel (e.g. Katz and Weatherly, 2012). In the models presented below, we test 

cases where the CBL is impermeable, and cases where it has low but finite permeability. We also 

explore how different CBL thicknesses affect the efficiency of fractionation of He from Ne in 

dunite channel wallrock. 

 

3. A model for kinetic fractionation of He from Ne in the mantle 

A schematic illustrating our model setup is shown in Fig. 5, which is similar to Kenyon 

(1990). The simulation domain is divided into three adjacent segments: harzburgite wallrock, a 

CBL with a relatively low melt fraction, and a dunite channel. The contact between the dunite 

channel and CBL is the origin in the horizontal (x) dimension. In all simulations the width of the 

simulation domain is 100m, the dunite channel is 5m wide; the width of the CBL varies as l. We 

assume melt upwells in the wallrock at a rate of 4cm/y and use the wallrock-hosted melt as our 

reference frame. Melt in the dunite channel advects 50× faster than melt in the wallrock owing to 
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its higher permeability (e.g., Kelmen et al., 1997). There is no lateral advection of melt; diffusion 

in the vertical (z) dimension is neglected. The composition of material in the dunite channel is 

given by 

𝜕𝐶𝑐

𝜕𝑡
+ 𝑉𝑐

𝜕𝐶𝑐

𝜕𝑧
= 𝐷𝑐

𝜕2𝐶𝑐

𝜕𝑥2
         (1), 

where Dc is the effective diffusion rate in the channel and Vc is the velocity of the channel melt in 

the z direction. The composition of the CBL is given by 

𝜕𝐶𝑏

𝜕𝑡
= 𝐷𝑏

𝜕2𝐶𝑏

𝜕𝑥2
          (2), 

where Db is the effective diffusion rate in the boundary layer. The composition of the harzburgite 

wallrock is given by 

𝜕𝐶𝑤

𝜕𝑡
= 𝐷𝑤

𝜕2𝐶𝑤

𝜕𝑥2
          (3), 

where Dw is the effective diffusion rate in the wallrock. Compositions at the channel-CBL 

interface and CBL-harzburgite wallrock interface and are fixed by equilibrium constants 

𝐶𝑏(𝑥 = 0) = 𝐾𝑐𝑏𝐶𝑐(𝑥 = 0)        (4), 

𝐶𝑤(𝑥 = −𝑙) = 𝐾𝑏𝑤𝐶𝑏(𝑥 = −𝑙)       (5), 

where Kcb is the bulk channel-CBL partition coefficient, and Kbw is the bulk CBL-wallrock 

partition coefficient, which depend on the relative phase proportions across these contacts 

(effectively the melt fractions, as we treat noble gases as perfectly incompatible in silicate 

minerals). Effective diffusion coefficients are given by 

𝐷𝑖 =
𝜑𝑖

√2
𝐷𝑚𝑒𝑙𝑡 + (1 − 𝜑𝑖)𝐷𝑠𝑜𝑙𝑖𝑑       (6), 

where 𝜑𝑖 is the melt fraction and diffusion in melt is scaled to correct for the tortuous matrix 

topology. In a second series of simulations we test cases where the CBL is impermeable; in those 
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simulations, Db is fixed at olivine volume diffusion rates. In all simulations, diffusion 

coefficients are calculated assuming a constant temperature of 1300°C. 

The maximum upwelling distance assumed (70km) is the minimum height of the melting 

column beneath mid-ocean ridges suggested by isotopic and trace element evidence for garnet 

stability at the base of the MORB source melting region (c.f. Kelemen et al., 1997, and 

references therein). This establishes the total time for upwelling of the wallrock melt (1.75 Myr). 

Initial concentrations of 3He and 22Ne in the wallrock are assumed to be 0, consistent with a few 

percent of near-fractional melting of the mantle before formation of dunite channel networks, 

and the very low partition coefficients of noble gases in mantle minerals (~10-4, Heber et al., 

2007; Jackson et al., 2013a). The initial 3He/22Ne in the channel is 1.5; for the purpose of 

studying the kinetic fractionation process concentrations are arbitrary but assumed to be 0.075 

ppm for 3He, and 0.05 ppm for 22Ne in the channel (bulk). Equations 1, 2 and 3 are solved 

numerically using a Crank-Nicholson finite difference method. The solver was tested against the 

exact solution to a constant surface diffusion problem (Supplementary Fig. S3) and found to be 

in excellent agreement. 

 

4. Results 

Diffusion profiles produced in representative simulations testing different He and Ne 

diffusivities are shown in Fig. 6 for a series of time steps; simulation assumptions are detailed in 

the figure caption. In general, 3He concentrations decrease in the dunite-hosted melt as they 

increase in the wallrock; 22Ne concentrations increase in the wallrock (and decrease in the 

channel) much more slowly. The simulations suggest that kinetic fractionation may efficiently 

modulate the 3He/22Ne of the depleted mantle within diffusive length scales around dunite 
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channels beneath mid-ocean ridges. We emphasize that heavier noble gases will not be 

fractionated from one another by melt migration because of their slower diffusivities.  

Dunite channels are thought to form a repeating network of dunite-wallrock units in 

triangular melting regions beneath mid-ocean ridges (Fig. 2a; also see Supplementary Figure S4). 

Material in the melt triangle ultimately becomes lithosphere as it cools and advects away from 

the ridge axis due to corner flow. To estimate He and Ne concentrations and the average 

3He/22Ne of the depleted mantle lithosphere, we input our simulation results into a melt triangle 

model assuming a 45-45-90 geometry and triangle depth of 70km directly beneath the ridge axis. 

Asthenospheric mantle forms new lithosphere that advects laterally away from the ridge axis as it 

crosses the solidus owing to conductive cooling. The upwelling rate is assumed to be uniform 

across the base of the triangle; melting columns near the corners of the triangle experience less 

upwelling than columns near the center because they are cooled and rotated into the direction of 

seafloor spreading at greater depths. When a parcel of mantle reaches the lithosphere-

asthenosphere boundary, it “freezes in” some fraction of trapped melt; here we assume 0.2% 

melt is frozen in the dunite, CBL and wallrock (e.g., Sundberg et al., 2010). Depending on the 

choice of diffusion coefficients, CBL thickness, and diffusive pathway (i.e., permeable vs. 

impermeable CBL), our models produce a regassed mantle lithosphere with a 3He/22Ne ratio ~2-

6× greater than the initial source value (Fig. 7a) and noble gas concentrations ~2-3 orders of 

magnitude below initial source values (Fig. 7b;c). 

Oceanic lithosphere eventually passes through subduction zones where it can form a high 

3He/22Ne MORB source, provided high 3He/22Ne mantle lithosphere is not fully degassed after 

subduction. The mantle’s heavy noble gas (Ar-Xe) budget appears to be dominated by a recycled 

atmospheric component likely related to subduction of hydrothermally altered slab (e.g., Holland 
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and Ballentine, 2006; Parai and Mukhopadhyay, 2015; Smye et al., 2017), but recycling of an 

atmospheric light noble gas (He-Ne) component has not had a demonstrable impact on mantle 

budgets. Because atmospheric 3He/22Ne in sediment and altered basalt is ~0, if surface-

influenced portions of subducting slabs did not lose atmospheric Ne and He in subduction zones, 

the MORB source would have a lower 3He/22Ne than primordial sources (e.g., Tucker and 

Mukhopadhyay, 2014). Shallow regions of subducting lithosphere presumably lose noble gases 

and other volatiles from pore fluids (Sumino et al., 2010) and hydrous phases (Jackson et al., 

2013b; Kendrick et al., 2011; 2018) owing to cracking, heating and prograde metamorphism 

(e.g., Chavrit et al., 2016; Holland and Ballentine, 2006; Staudacher and Allègre, 1988; Smye et 

al., 2017). Isotopic, lithologic, and geospeedometric evidence suggests hydration beneath 

oceanic spreading centers is limited to approximately the upper km of the mantle section (Dygert 

and Liang, 2015; Dygert et al., 2017; Gregory and Taylor, 1981; Rospabe et al., 2017). Seismic 

reflection-refraction data suggest hydration of old lithospheric slabs is restricted to the upper 

10km of mantle lithosphere (e.g., Han et al., 2016; Van Avendonk et al., 2011). Thus, it is 

reasonable to expect that most mantle lithosphere that passes through subduction zones is not 

hydrated, and that mantle-derived noble gases in thick lithospheric slabs pass through subduction 

zones, allowing them to impart their high 3He/22Ne signature on the convecting mantle.  

 

5. A MORB mantle mixing model 

Regassed mantle has He concentrations ~2-3 orders of magnitude lower than undegassed 

mantle that did not experience partial melting and kinetic fractionation beneath mid-ocean ridges 

(Figs. 7b,c). Thus, equal mixtures of undegassed and diffusively regassed mantle will have 

3He/22Ne similar to undegassed mantle. In order to form a MORB source with high 3He/22Ne, 
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most of the MORB mantle must have cycled through the global mid-ocean ridge system at least 

once, and mantle mixing must be sufficiently slow to produce a large reservoir of unmixed, 

regassed mantle. Volumetrically smaller mixtures of regassed and undegassed mantle may form 

low 3He/22Ne component within the MORB source. 

Here we adopt the methodology of Gonnermann & Mukhopadhyay (2009) (their 

analytical box model) to consider the formation of a high 3He/22Ne MORB source. This model 

differs from their numerical simulations in two fundamental ways: (1) we make no attempt to 

model the evolution of the OIB source, which we consider to have been partially isolated from 

the MORB source throughout geologic time (e.g., Caracausi et al., 2016; Mukhopadhyay, 2012; 

Mundl et al., 2017; Pető et al., 2013; Rizo et al., 2016), (2) we do not consider or advocate for a 

lower mantle that is isolated from the upper mantle. On the contrary, our results suggest that the 

MORB source has dominated the volume of the upper and lower mantle throughout geologic 

time (see Section 8).  

Within the MORB source there are high and low 3He/22Ne reservoirs made up of 

components. The low 3He/22Ne reservoir is composed of “undegassed” component that 

experiences some mixing with subducted, high 3He/22Ne components; the high 3He/22Ne 

reservoir is composed of many “regassed” components that are partially consumed by mixing 

with low 3He/22Ne component,  

𝑀𝑑

𝑀0
=

𝑁

𝑡
∫ 𝑒(𝑠−𝑡) 𝜏⁄ 𝑑𝑠
𝑡

0
          (7). 

Md is the mass of depleted, high 3He/22Ne component produced at time s remaining in the MORB 

source at time t, M0 is the initial mass of the MORB source, N is the number of MORB source 

masses processed through the global mid-ocean ridge system over time t, and τ is a characteristic 

mantle mixing timescale. Integrating over geologic time, 
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𝑀𝑑

𝑀0
= 1 −

𝑁

𝑡
𝜏 −

𝑁

𝑡
𝜏𝑒−𝑡 𝜏⁄         (8). 

This model assumes that the MORB source was initially composed of a single body of 

primordial, low 3He/22Ne (~1.5) material that is consumed as high 3He/22Ne components are 

produced to form the high 3He/22Ne reservoir. The low 3He/22Ne reservoir in the MORB source 

melts preferentially because it is more fusible than the depleted, high 3He/22Ne reservoir (Fig. 

8a).  

Because He and Ne concentrations in regassed, high 3He/22Ne mantle are low, mixing 

between low and high 3He/22Ne components enlarges the low 3He/22Ne reservoir and shrinks the 

high 3He/22Ne reservoir. For a given N, a long τ produces a relatively large high 3He/22Ne 

reservoir; a short τ produces a relatively large low 3He/22Ne reservoir. Tradeoffs between 

characteristic mantle mixing timescales (τ) and the number of mantle masses fluxed through the 

global mid-ocean ridge system (N) are shown in Fig. 8b for cases where the MORB source is 

composed of 90±10% high 3He/22Ne reservoir. This large extent of degassing can be accounted 

for by 4-9 MORB source masses being cycled through the global mid-ocean ridge system (e.g., 

Coltice et al., 2009; Tolstikhin et al., 2014), which corresponds to a τ value range of ~0.4-1 Gyr 

(Fig. 8b). Smaller N values require longer characteristic mantle mixing timescales. MORB 

mantle mixing timescales have been constrained using pseudochrons within the Rb-Sr, Sm-Nd, 

and U-Pb isotopic systems (Donnelly et al., 2004); mantle mixing timescales derived from these 

pseudochrons are roughly consistent with τ values explored here (~0.3 Gyr vs. ~0.4-1 Gyr). In 

scenarios where MORB source mixing timescales are shorter, volatile extraction by volcanism is 

inefficient because volatile-poor components within the MORB source are homogenized with 

and dominated by more volatile-rich components (Fig. 8; Gonnermann and Mukhopadhyay, 

2009). Thus, the long MORB source mixing timescales suggested by the 3He/22Ne system are 
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corroborated by observed depletion of radiogenic Xe isotopes and 3He relative to radiogenically 

produced 4He in the MORB source (see below, e.g., Class and Goldstein, 2005; Coltice et al., 

2009; Davies, 2011; Parai et al., 2015; Porcelli and Elliot, 2008; Tolstikhin et al., 2014; Tucker 

et al., 2012).  

  

6. Consistency of our model with other noble gas systems and mantle dynamics 

6.1 Constraints on MORB source degassing from long-lived Xe and 3He/4He systematics 

For regassed, high 3He/22Ne mantle to be a significant reservoir within the MORB source, 

degassing of primordial volatiles from the MORB mantle must have been extensive (>96%) 

owing to the low overall gas contents of regassed mantle. Evidence for extensive degassing of 

primordial volatiles comes from recent studies that demonstrate the MORB mantle contains very 

little Pu-derived Xe compared to U-derived Xe. Because Pu-derived Xe was produced before U-

derived Xe, this observation implies >99% degassing of the MORB source primordial volatile 

budget throughout geologic time (e.g., Tolstikhin et al., 2014; Tucker et al., 2012; Parai et al., 

2015). Similar extents (>99%) of degassing are implied by estimates of initial mantle 3He 

concentration and present-day MORB source 3He/4He systematics (e.g., Class and Goldstein, 

2005; Porcelli and Elliot, 2008). Depending upon the isotopic system, estimates of timescales for 

achieving 99% MORB source degassing range from ~1.5Gyr to all of geologic time (e.g., 

Tolstikhin et al., 2014 and references therein). The Xe system suggests extensive early degassing 

followed by a longer period of more measured degassing. Extensive early degassing could have 

been produced by vigorous Hadean volcanism, potentially superimposed on degassing associated 

with a Moon-forming giant impact. However, provided that He was fractionated from Ne around 

dunite channels for most of geologic time, no impact-related degassing is required by our model.   
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6.2 Consistency of extensive MORB source degassing with dynamic models and Earth’s 40Ar 

budget 

Canonical estimates of Earth’s 40Ar budget place ~50% of all 40Ar atoms in the mantle 

(Hart et al., 1985; Allègre et al., 1996). Because 40Ar is strictly produced by the decay of 40K and 

40K has a 1.25 Gyr half-life, this implies >50% degassing of the mantle’s primordial volatile 

component. Within a purely whole mantle convection model framework, 50% degassing of 40Ar 

is achieved in dynamic models at ~60% to 93% primordial element degassing, depending on 

Earth’s thermal history (Brandenburg et al., 2008; Phipps Morgan, 1998; van Keken and 

Ballentine, 1999). This range of primordial element degassing is less than the >96% required by 

the 3He/22Ne system within our model and the 3He/4He and Xe isotope systems. Within the 

dynamic models, higher MORB source primordial volatile degassing extents would be associated 

with 50% retention of 40Ar if depth of melting scaled with mantle potential temperature and/or if 

a portion of the mantle 40Ar budget were contained in a region separate from the MORB source 

(e.g., Ballmer et al., 2017; Kellog et al., 1999; Mukhopadhyay, 2012; Tolstikhin et al., 2006). 

Unambiguous evidence for mantle reservoirs isolated from the MORB source throughout 

geologic time is given by the isotopic systematics of OIBs (Caracausi et al., 2016; 

Mukhopadhyay, 2012; Mundl et al., 2017; Pető et al., 2013; Rizo et al., 2016), providing at least 

one “hidden reservoir” to balance Earth’s 40Ar budget. However, we note that uncertainties in the 

mantle 40K budget are significant, potentially eliminating any need to host 40Ar in hidden mantle 

reservoirs (e.g., Lassiter, 2004). Thus, the requirement for large extents of MORB source 

primordial volatile degassing is consistent with the 40Ar distribution in the Earth.  

  

6.3 MORB source 3He/4He and 4He/40Ar  
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The processes that cause kinetic fractionation of He from Ne around dunite channels in 

the MORB source will also fractionate He from U and Th. U and Th decay to produce 4He; 

MORB melts and subcontinental lithospheric mantle have 3He/4He of ≲8RA (RA being the 

atmospheric ratio), far below the closed system value for a primitive mantle and suggesting long 

term depletion of 3He relative to U+Th in the MORB source (e.g., Allègre et al., 1983; Day et al., 

2005). Because U and Th diffusion rates are sluggish, our kinetic fractionation model would be 

expected to enrich the MORB mantle in 3He relative to U+Th during melt migration beneath 

mid-ocean ridges, in apparent contradiction with a low 3He/4He MORB source. However, we 

invoke long-term subduction of oceanic crust along with high 3He/22Ne mantle lithosphere to 

form a high 3He/22Ne MORB source. Because U and Th are highly incompatible during mantle 

melting and the overwhelming majority of magmatic He is degassed, subducted lithosphere has a 

strongly elevated U+Th/He ratio. We modeled the evolution of 3He/4He in the depleted mantle 

assuming a fraction of U+Th in the subducted oceanic crust is mixed back into the high 3He/22Ne 

MORB source (Supplementary Figures S5a;d). Our models suggest the regassed high 3He/22Ne 

mantle quickly recovers the signature low 3He/4He ratio associated with the MORB source by 

production of 4He (Supplementary Figure S5).  

The 4He/40Ar ratio of the mantle is similar to or greater than values calculated assuming 

closed system accumulation of 4He and 40Ar due to the decay of U+Th and 40K (e.g., Burnard, 

2004; Honda and Patterson, 1999). Like He, U and Th, He may be expected to be fractionated 

from Ar around dunite channels owing to relatively sluggish diffusion of Ar in mantle materials, 

creating a high 4He/40Ar ratio regassed mantle that is inconsistent with some observations. 

However, the production rate of 4He and 40Ar (by U+Th and 40K decay) is sufficiently fast such 

that the elevated 4He/40Ar of the regassed mantle is overwhelmed by decay of U+Th+K in the 
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crustal component of the subducted slab. Models presented in Supplementary Figures S5b;e 

suggest that after a fractionation event, the high 3He/22Ne MORB source quickly recovers 

4He/40Ar values consistent with observations.  

 

7. Evidence for kinetic fractionation of 3He from 22Ne 

The most convincing verification of our kinetic fractionation model would come from 

direct observation of noble gas concentration gradients around dunite channels in ophiolites. We 

believe direct observation is unlikely because (1) serpentinization upon exhumation of mantle 

lithosphere may overprint preexisting noble gas signatures (Kendrick et al., 2011; 2018; Sumino 

et al., 2010), and (2) subsolidus reequilibration should be rapid enough to homogenize diffusion 

profiles over timescales relevant to lithospheric cooling.  

Evidence for kinetic fractionation may alternatively be observed in basalts and mantle 

xenoliths. Near-fractional partial melting of the mantle, concomitant with transport-produced 

kinetic fractionation, will form mantle sources depleted in incompatible trace elements (e.g., 

Johnson et al., 1990; Sobolev and Shimizu, 1993) with elevated 3He/22Ne. Parent isotopes are 

fractionated from daughter isotopes by mantle melting events, such that ancient, long-term 

depletion is recorded by radiogenic isotope ratios in abyssal peridotites unaffected by significant 

overprinting from melt impregnation (e.g., Mallick et al., 2014; Warren et al., 2009). Thus, we 

expect a correlation between 3He/22Ne and indices of long-term depletion such as radiogenic 

isotopes and incompatible trace element ratios. These correlations are observed within 87Rb-87Sr 

and 147Sm-143Nd isotope systems, and in La/Sm ratios in MORBs from around the world (Figure 

9; also see Tucker and Mukhopadhyay, 2014). 



21 

 

Whether these trends represent mixtures of basalts from more and less depleted sources 

or simply variations in the extent of source depletion is uncertain. Preservation of La/Nd-

3He/22Ne and radiogenic isotope-3He/22Ne correlations requires that basalts subducted along with 

high 3He/22Ne mantle lithosphere lose some of their enrichment before being mixed back into the 

MORB source (e.g., Gonnermann and Mukhopadhyay, 2009), likely to continental crust, or that 

basaltic crust is partly decoupled from mantle lithosphere during subduction. If unmodified 

lithosphere were subducted back into MORB mantle, then MORB mantle would not be net 

depleted and the correlations shown in Figure 9 would not be preserved. 

 Mantle peridotite xenoliths are typically residues of partial melting and unaltered 

specimens can be obtained for analysis. They may faithfully record kinetic fractionation of 3He 

from 22Ne (or the lack thereof) depending on their melting history. Available data on the noble 

gas abundances in peridotite xenoliths are limited, but exhibit 3He/22Ne systematics consistent 

with trends among basalts. Hotspot-sourced xenoliths (Fig. 1d) have relatively low 3He/22Ne, 

slightly elevated relative to their basaltic counterparts, as would be expected in a kinetic 

fractionation scenario. Subcontinental samples have greater variations in 3He/22Ne (Fig. 1e). 

Central European subcontinental lithospheric mantle (SCLM) is relatively low in 3He/22Ne and 

may be affected by a mantle plume (Builkin et al., 2005), but xenoliths from the Patagonian 

backarc have high and variable 3He/22Ne (Jalowitski et al., 2016). Peridotites from arc 

environments that experienced high extents of partial melting are expected to have high 3He/22Ne 

ratios owing to repeated or prolonged kinetic fractionation events, consistent with the Patagonian 

xenoliths. However, because 3He/22Ne in SCLM xenoliths may be overprinted by interaction 

with metasomatic fluids/magmas, it is not clear which volatile sources are represented in SCLM 

xenolith compositions. The picture is further muddied by estimates of SCLM 3He/22Ne from well 
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gas data which suggest ratios of 0.1-1.9 (Ballentine, 1997). However, these well gases are from 

crustal reservoirs with small mantle-derived components. Our model predicts a secular increase 

in the average MORB source 3He/22Ne throughout geologic time. Thus, we may anticipate that 

ancient SCLM has a 3He/22Ne closer to Earth’s primordial value than younger SCLM. We 

encourage additional efforts to characterize the systematics of SCLM 3He/22Ne.  

 

8. Implications 

Because the MORB mantle has an elevated 3He/22Ne, the entire MORB source must have 

experienced at least one melt extraction and kinetic fractionation event. According to our 

simulations, each event removes 96-99% of the He and 98-99.7 of the Ne from the mantle source 

(Figure 7). Subsequent melt extraction events will further deplete the MORB source. Thus, our 

models imply the MORB mantle is at least 96% degassed with respect to its primordial He and 

98% degassed with respect to its primordial Ne, in agreement with previous estimates based on 

3He/4He and Xe isotopes (e.g., Class and Goldstein, 2005; Davies, 2011; Porcelli and Elliott, 

2008; Tolstikhin et al., 2014; Tucker et al., 2012). The near complete extraction of He and Ne 

likely extends to the full suite of Earth’s primordial volatiles, given their similar behavior upon 

mantle melting (Aubaud et al., 2005; Heber et al., 2007; Jackson et al., 2013a; Keppler et al., 

2003). This suggests that the primordial volatile content of the convecting mantle has been 

essentially lost to Earth’s surface and that the modern volatile content of the mantle is dominated 

by recycling processes.  

Kinetic fractionation around dunite channels may modulate the ratio of any relatively fast 

and slow diffusing element pairs in the depleted mantle (e.g., H/C, He/C, H/N, He/(U+Th)). H/C 

is high in the most H2O depleted basalts (Hirschmann and Dasgupta, 2009), consistent with 
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kinetic fractionation of light H from relatively heavy C around dunite channels. However, any 

element that is reintroduced to the mantle by subduction will have a more complicated cycling 

history than 3He/22Ne, i.e., kinetic fractionation of many element pairs may not be observable in 

the compositions of erupted basalts due to recycling and mixing.  

Seismic tomography suggests subducted slabs pass through the mantle transition zone 

(e.g., Grand, 2002; Fukao and Obayashi, 2013; Kárason and van der Hilst, 2000), which must be 

balanced by complementary mass transport from the lower to upper mantle (e.g., Forte et al., 

2010). The timing associated with the onset of mantle convection across the transition zone, 

however, is unclear (e.g., Allègre, 1997; Davies, 1995). Our model requires convection across 

the transition zone throughout geologic history so that the low 3He/22Ne ratios of undegassed 

lower mantle do not dominate the modern day convecting mantle. Because mixtures of 

undegassed and regassed mantle will have low 3He/22Ne ratios, the preservation and prevalence 

of the high 3He/22Ne MORB source suggests the regions of the lower mantle that participate in 

MORB mantle magmatism have already passed through the global mid-ocean ridge system at 

least once, i.e., mantle convection is not and has not been layered about the transition zone for 

most of geologic history. To preserve the high 3He/22Ne MORB source, exchange of noble gases 

between low 3He/22Ne, high 3He/4He reservoirs and the depleted mantle must be limited, as 

suggested by Xe and W isotope systematics (e.g., Caracausi et al., 2016; Mukhopadhyay, 2012; 

Mundl et al., 2017; Pető et al., 2013; Rizo et al., 2016). This does not preclude mass exchange of 

less volatile elements, or exchange of volatiles between subducted materials and the OIB and 

MORB sources (Parai and Mukhopadhyay, 2015). Lowest and highest 3He/22Ne MORB mantle 

components likely reside in the lower mantle, where high viscosities impede mechanical stirring. 
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If mixing is relatively rapid in the upper mantle, mixing timescales for the 3He/22Ne system 

predominantly reflect rates of mass exchange between the upper and lower mantle.   
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FIGURE CAPTIONS 

 

Figure 1. 3He/22Ne ratios of ocean island basalts (a), plume-influenced MORBs (b), MORBs (c), 

hotspot sourced mantle xenoliths (d), and subcontinental lithospheric mantle (e). 3He/22Ne for all 

samples are calculated using methods detailed in the electronic supplement. Data used to 

calculate ratios for subaerial samples are exclusively from crush steps in order to minimize any 

contribution from a cosmogenic component. Shown in parentheses are the standard deviation 

(mean) and median absolute deviation (median). Data source references are presented in the 

Electronic Supplement; the compilation is downloadable from the electronic repository. Sample 

localities are the following; OIBs: Galapagos, Samoa, Iceland, Reunion, Hawaii; plume-

influenced MORBs: Azores, Discovery, Shona, East Pacific Rise, Galapagos Ridge, Southeast 

Indian Ridge; MORBs: Mid Atlantic Ridge; East Pacific Rise; Chile Ridge, Southwest Indian 

Ridge; hotspot sourced xenoliths: Hawaii, Mt. Cameroon, Kerguelen, Biu Plateau, Reunion, 

Samoa; subcontinental lithospheric peridotites: Szentbekalla (Hungary), Dreiser Weiher 

(Germany), Laguna Ana; Laguna Timone; Governador Gregores (Patagonia). In all cases, we 

deferred to the interpretations of our data sources to assign a sample type, which were assigned 

based on 3He/4He and radiogenic isotope ratios. 

 

Figure 2. Schematic of a dunite channel network in a triangular melting region beneath a mid-

ocean ridge (a). Arrows show paths of solid advection. Partial melts are focused and extracted in 

tabular dunite bodies (green). (b) Close-up showing dunite-wallrock relationships. Between the 

dunite and harzburgite wallrock is a compacting boundary layer with a low melt fraction. Note 

the harzburgite wallrock and dunite channel host melts with distinct compositions, in local 

equilibrium with their host matrix. 
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Figure 3. Measured rates of He and Ne diffusion in the olivine lattice (a) and silicate glasses (b); 

He diffusion along olivine aggregate grain boundaries (c); and relative diffusion rates of He and 

Ne as a function of temperature (d) for experiments from three laboratories. Glass data are 

extrapolated from lower temperature experimental observations through the glass-liquid 

transition, and are from simple compositional systems which may differ structurally from 

basaltic glasses. 

 

Figure 4. An Arrhenius plot showing data collected in a bulk degassing experiment on a proton 

irradiated fragment of San Carlos olivine, and Arrhenius parameters inverted from the data. He 

and Ne data were collected simultaneously. We estimate an effective spherical radius of 330µm 

for this grain (see Supplementary Figure S4), yielding preexponentials of 8.80 × 10−7−4.16×10−7
+7.89×10−7

 

for He and 1.25 × 10−6−7.21×10−7
+1.70×10−6  for Ne.  

 

Figure 5. Schematic illustrating our model setup. Vertical advection in the harzburgite wallrock 

and CBL is not shown as it provides a reference frame for our solutions. Total upwelling 

distance is 70km. Diffusion in the vertical dimension is neglected. 

 

Figure 6. Representative results from simulations assuming different diffusion coefficients and a 

6m thick compacting boundary layer. 3He/22Ne is the ratio of the regassed lithosphere after 

compaction of trapped melt to a residual value of 0.2% (see Section 4). 

 



27 

 

Figure 7. 3He/22Ne regassed in mantle lithosphere relative to its initial source value from 

simulations assuming a permeable compacting boundary layer (solid lines) and an impermeable 

layer (dashed lines) as a function of compacting boundary layer thickness (a). Average He (b) 

and Ne (c) concentrations in the mantle lithosphere relative to initial mantle source 

concentrations. The extent of depletion of the regassed mantle relative to its undegassed mantle 

source is estimated assuming a 10% extent of melting.  

 

Figure 8. (a) Cartoon illustrating the formation of a high 3He/22Ne MORB source according to 

the model of Gonnermann and Mukhopadhyay, 2009 (Eqs. 7 & 8). The high 3He/22Ne reservoir, 

composed of many high 3He/22Ne components formed at different times, is produced by partial 

melting and kinetic fractionation of material originating from a primordial, low 3He/22Ne 

reservoir. Mixing between the low and high 3He/22Ne reservoirs shrinks the high 3He/22Ne 

reservoir and enlarges the low 3He/22Ne reservoir. If mixing is sufficiently slow, the high 

3He/22Ne reservoir grows through time, as is shown here. (b) Tradeoff between the number of 

MORB source masses fluxed through the global mid-ocean ridge system (N) and the 

characteristic mantle mixing timescale (τ) needed to produce a MORB source composed of 90% 

of regassed, high 3He/22Ne mantle (solid line) according to Eq. 8. Dashed lines show cases with a 

MORB source composed of 10% more or less high 3He/22Ne mantle. The black box shows the 

range of permissible values according to Xe isotope systematics (e.g., Coltice et al., 2009; 

Tolstikhin et al., 2014). 

 

Figure 9. Variations among 3He/22Ne and several indices of depletion; chondrite normalized 

La/Nd (a); 204Pb/206Pb (b); 144Nd/143Nd (c); 86Sr/87Sr (d). La/Nd, 144Nd/143Nd, and 86Sr/87Sr show 
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good correlations between 3He/22Ne and extent of source depletion, consistent with our model 

which predicts that samples with the highest 3He/22Ne should be the most depleted. Data used to 

prepare this figure are presented in the electronic repository; references are listed in the 

Electronic Supplement. 
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Methods for calculating 3He/22Ne ratios 

A useful expression used to calculate 3He/22Ne from measured 3He/4He and 21Ne/22Ne 

ratios in mantle-derived rocks (Honda and McDougall, 1998) is as follows: 

𝐻𝑒3 𝑁𝑒22⁄ =
𝑁𝑒21 𝑁𝑒22⁄

𝐸
− 𝑁𝑒21 𝑁𝑒22⁄

𝑖

𝐻𝑒4 𝐻𝑒3
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁄ − 𝐻𝑒4 𝐻𝑒3

𝑖⁄
× ( 𝐻𝑒4 𝑁𝑒21⁄ )

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
   (1), 

where 4He/3Hemeasured is the measured He isotope ratio in the sample, 21Ne/22NeE is the measured 

ratio extrapolated to its source value in a 20Ne/22Ne vs. 21Ne/22Ne plot in order to correct for 

atmospheric contamination (we assume a mantle source 20Ne/22Ne of 12.5 for all samples 

presented in this study, Tucker et al., 2012), 4He/21Neproduction is ratio of radiogenic 4He to 

nucleogenic 21Ne production in the mantle (4.5×10-8; Yatsevich and Honda 1997), and 21Ne/22Nei 

and 4He/3Hei are the assumed initial values of Earth’s mantle (0.03129 and 6024, respectively, 

Trieloff and Kunz, 2005; Mahaffy et al., 1998) This method mitigates uncertainties in 3He/22Ne 

related to atmospheric contamination and degassing (e.g., Gonnermann and Mukhopadhyay, 2007; 

Tucker et al., 2014; Weston et al., 2015; Yamamoto and Burnard, 2005). 

Post-eruptive 3He, 4He, 21Ne and 22Ne nuclides are produced by nuclear reactions with 

cosmic ray particles (e.g., Kurz, 1986; Niedermann et al., 1993). These reactions will disturb 

3He/22Ne ratios calculated using Eq. 1. Because cosmic ray particles are strongly attenuated by 

seawater at depths relevant to ocean basins (e.g., Higashi et al., 1966), samples collected from 

submarine environments are much less susceptible to cosmogenic disturbance than samples 

collected subaerially; therefore we assume no cosmogenic He or Ne production in subaqueous 

samples. Cosmogenic nuclide production predominantly occurs in crystal lattices where parent 

isotopes are preferentially hosted (e.g., Craig and Poreda, 1986; Kurz, 1986). Noble gases trapped 

in fluid inclusions, which can be measured in crush extractions, may be more faithful recorders of 

source compositions than gases released by step heating, which includes lattice-sited cosmogenic, 

radiogenic (and nucleogenic) components as well. Data from subaerially sampled basalts and 

xenoliths discussed here are exclusively from crush extractions; we present data from heating and 

crush extractions for samples collected in submarine environments. 
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Noble gas diffusion experiment methods 

To quantify the kinetics of He and Ne diffusion in olivine we conducted step-degassing 

experiments on a proton-irradiated fragment of San Carlos olivine, a compositionally 

homogenous sample commonly utilized as an electron microprobe analysis standard (Fo92; Frey 

and Prinz, 1976; Blard et al., 2008). Proton irradiation generates uniform concentrations of both 

He and Ne in olivine that are high enough to conduct step-degassing experiments on single 

crystal fragments (Shuster et al., 2004; Gourbet et al., 2012). 21Ne and 22Ne are most likely 

produced from nuclear reactions on Si and Mg, while 3He is produced from nuclear reactions on 

essentially all target nuclei (Leya et al., 1998; Shuster et al., 2004). 

We co-irradiated many fragments of San Carlos olivine with a ~220 MeV proton beam 

for 5 hours with a total fluence of 4.9  1015 pm/cm2 at the Francis H. Burr Proton Therapy 

Center at the Massachusetts General Hospital in 2007. For a detailed description of the 

irradiation setup, see Tremblay et al. (2017). We selected a single fragment with no visible 

fractures, fluid inclusions, or mineral inclusions and measured the dimensions of this fragment 

using a calibrated petrographic microscope (Fig. S1). We packaged the selected fragment into a 

Pt-Ir envelope affixed to a K-type thermocouple and placed it under vacuum. We heated the Pt-Ir 

envelope and sample using a 70W diode laser defocused over the Pt-Ir envelope. We regulated 

and measured the sample temperature to within ~2°C (in most cases, see below) via a PID-

controlled feedback loop between the thermocouple and laser. We then measured the He and Ne 

released in each heating step separately with an MAP 215-50 sector field mass spectrometer in 

the Berkeley Geochronology Center Noble Gas Thermochronometry Lab. Details of the gas 

purification and mass spectrometer analytical procedures can be found in Tremblay et al. (2014). 

Blank-corrected 3He and 21Ne measurements from each experimental heating step are reported in 

Table S1. We used the measured release fraction and duration of each heating step to calculate 

diffusion coefficients using the equations of Fechtig and Kalbitzer (1966), assuming that the 

olivine diffusion domain is represented by the whole crystal fragment and is spherical, a justified 

assumption for fragments with modest aspect ratios like the one used here (e.g., Meesters and 

Dunai, 2002; Huber et al., 2011). 

We were unable to fully degas Ne from the olivine fragment using the thermocouple 

setup. In a few cases at temperatures around ~1000 ºC, drooping of the thermocouple, on which 

the Pt-Ir envelope and sample are suspended, caused misalignment between the laser beam and 
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Pt-Ir envelope and as a consequence poor temperature control. To achieve full degassing, we 

transferred the Pt-Ir envelope to a laser chamber with pyrometer-controlled temperature. Heating 

steps with pyrometer temperature control, as well as the poorly controlled temperature steps on 

the thermocouple, are utilized to calculate the cumulative gas fraction released during the step-

degassing experiment, but the diffusion coefficients calculated for these steps are not plotted in 

Fig. 4, and these diffusion coefficients are not used to calculate the activation energy and pre-

exponential factor.  

 

 

References 

 

Blard, P.-H., Puchol, N., Farley, K.A., 2008. Constraints on the loss of matrix-sited helium 

during vacuum crushing of mafic phenocrysts. Geochim. Cosmochim. Acta 72, 3788–

3803. 

Fechtig, H., Kalbitzer, S., 1966. The Diffusion of Argon in Potassium-Bearing Solids, in: 

Potassium Argon Dating. pp. 68–107. 

Frey, F.A., Prinz, M., 1978. Ultramafic inclusions from San Carlos, Arizona: Petrologic and 

geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett. 38, 129–176. 

Gourbet, L., Shuster, D.L., Balco, G., Cassata, W.S., Renne, P.R., Rood, D., 2012. Neon 

diffusion kinetics in olivine, pyroxene and feldspar: Retentivity of cosmogenic and 

nucleogenic neon. Geochim. Cosmochim. Acta 86, 21–36. 

Huber, C., Cassata, W.S., Renne, P.R., 2011. A lattice Boltzmann model for noble gas diffusion 

in solids: The importance of domain shape and diffusive anisotropy and implications for 

thermochronometry. Geochim. Cosmochim. Acta 75, 2170–2186. 

Leya, I., Busemann, H., Baur, H., Wieler, R., Gloris, M., Neumann, S., Michel, R., Sudbrock, F., 

Herpers, U., 1998. Cross sections for the proton-induced production of He and Ne 

isotopes from magnesium, aluminum, and silicon. Nucl. Instrum. Methods Phys. Res. B 

145, 449–458. 

Meesters, A.G.C.A., Dunai, T.J., 2002. Solving the production–diffusion equation for finite 

diffusion domains of various shapes: Part I. Implications for low-temperature (U–Th)/He 

thermochronology. Chem. Geol. 186, 333–344. 



6 

 

Tremblay, M.M., Shuster, D.L., Balco, G., 2014. Diffusion kinetics of 3He and 21Ne in quartz 

and implications for cosmogenic noble gas paleothermometry. Geochim. Cosmochim. 

Acta 142, 186–204. 

  

  



7 

 

 
 

Figure S1. The olivine fragment (SCOL-h) investigated in our degassing experiment. We 

estimate the effective spherical radius to be 330µm. 
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Figure S2. Residuals to Arrhenius fits for He and Ne plotted as a function of cumulative total 

gas released (a,c) and experimental temperature (b,d). Unfilled red circles in (a) and (b) show 

data that were excluded from the Arrhenius parameterization. 
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Figure S3. Comparison of numerical solutions (solid lines) to exact solutions (circles) for 

constant surface diffusion into a semi-infinite halfspace assuming different diffusivities and 1.75 

Myr of diffusion. In general the exact and numerical solutions are in excellent agreement. The 

1×10-11 numerical simulation diverges slightly from the exact solution because the numerical 

diffusion domain has a finite width (95m). 
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Figure S4. Schematic illustrating the geometry of our lithosphere formation model. The melt 

triangle is composed of a repeating pattern of dunite channel-wallrock units. Vertically upwelling 

asthenospheric mantle in the triangle cools sufficiently to become a part of the thickening 

lithospheric keel (light green), then it advects laterally away from the ridge axis in the direction of 

seafloor spreading. It ultimately passes through a subduction zone and is mixed back into the 

convecting mantle. 
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Figure S5. Models for radiogenic ingrowth of 4He and 40Ar in the mantle after kinetic 

fractionation events for scenarios where (1) 14% of U+Th+K in newly formed crust is recycled 

back into the MORB mantle reservoir (Figs. a,b,c) and (2) 33% of U+Th+K is recycled back into  

the MORB mantle reservoir (Figs. d,e,f). These models assume that after each extraction event, 

kinetic fractionation retains 3% of He in the source and 0.4% of Ar in the source (c.f. Fig. 7), 

U+Th+K are perfectly incompatible during mantle melting, and that the subducted U+Th+K is 

instantaneously mixed back into in the MORB reservoir. Assumptions for initial U, Th, 4He, and 

3He abundances are as in Harper and Jacobsen (1996). Initial 40K is calculated assuming a 

present-day bulk Earth U/K of 12,700 (Allègre et al., 1996). (a,d) Predicted mantle 3He/4He 

compared to measured values in subcontinental peridotites (Day et al., 2005). (b,e) predicted 

mantle 4He/40Ar compared to (c,f) air contamination-corrected measured values (4He/40Ar*) in 

MORB glasses (Honda and Patterson, 1999) and popping rock (Moreira et al., 1998). Evolution 

of an undegassed primitive mantle (the closed system model) is shown as blue lines. Other lines 

show the evolution of a MORB reservoir after subsequent extraction (partial melting/kinetic 

fractionation) event(s). Model extensions after an extraction event show how the reservoir would 

have evolved had an extraction event not occurred. The model results are non-unique; the 
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amount of recycled U+Th+K and the timing and number of extraction events strongly affect the 

resultant MORB reservoir composition and it is trivial to produce higher or lower 3He/4He and 

higher 4He/40Ar. Full investigation of variations among these and other parameters are beyond 

the scope of this study. Nonetheless, these models demonstrate that within the context of our 

kinetic fractionation model the expected MORB reservoir compositions are in agreement with 

3He/4He and 4He/40Ar* observations. We note that popping rock has a lower 4He/40Ar* than our 

closed system predictions (b,e), suggesting the bulk Earth may have a higher K/U and/or lower 

Th/U than our assumed values (c.f. Honda and Patterson, 1999); alternatively popping rock may 

have experienced disequilibrium degassing preferentially retaining Ar relative to He (e.g. 

Gonnermann and Mukhopadhyay, 2007; Weston et al., 2015), as suggested by its low 

4He/21Nenucleogenic component (e.g., Fig. 4, Honda and Patterson, 1999). We note that recycling 

33% of the oceanic crust subduction flux into the MORB source is consistent with estimates of 

the amount of subducted oceanic crust in the MORB source (4%, Sobolev et al., 2007) assuming 

a 50km thick mantle lithosphere and 6km thick crust. If some U+Th+K in the subducting oceanic 

crust is lost to partial melting or another process, lower U+Th+K recycling values (e.g. 14%) 

may be expected. 
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Figure S6. 3He/22Ne ratio of a reconstructed atmosphere produced by mantle outgassing. Our 

model demonstrates that plate tectonic cycling can generate a mantle with elevated 3He/22Ne ratios. 

Implicit in the generation of a high 3He/22Ne mantle is the outgassing of a complementary low 

3He/22Ne component to the atmosphere. Mantle outgassing, as considered here, is nearly complete 

such that the 3He/22Ne ratio of the low component is essentially equal to the initial 3He/22Ne ratio 

of the mantle. Identifying this low 3He/22Ne component in the atmosphere is complicated by the 

continuous loss of He to space and the uncertain initial composition of noble gases in the 

primordial atmosphere. 

 Here we evaluate whether the composition of the modern atmosphere is consistent with the 

incorporation of the low 3He/22Ne component. We first establish the maximum mantle contribution 

of 22Ne to the atmosphere. We take the 20Ne/22Ne ratio of the MORB mantle to be 12.5, following 

modern measurements (Ballentine & Holland, 2008). We also take the 20Ne/22Ne ratio of the 

primordial atmosphere to be 8.2 (Ne-A, Black, 1972). The modern atmosphere 20Ne/22Ne ratio is 
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9.8, and this implies a mixture of 37% mantle contribution or 5×1013 moles of 22Ne outgassed from 

the mantle. Total atmospheric 22Ne abundance is from Marty (2012). 

The total moles of 3He outgassed to the atmosphere can only be indirectly ascertained 

because He is lost continuously from the atmosphere to space. The present 3He concentration of 

the mantle is constrained by the flux of 3He from mid-ocean ridges and the corresponding mass of 

mantle melted beneath ridges. This calculation assumes perfect incompatibility and complete 

extraction. Estimates for the global 3He flux range from 241 to 1340 mol/y (Saal et al., 2002, Craig 

et al., 1975), with a recent estimate giving a range of 640 to 850 mol/y (Holzer et al., 2017). The 

volume of mantle that melts to support the flux is calculated as the product of the global half-

spreading rate (2.5 cm/y, Conrad & Lithgow-Bertelloni, 2007), the length of the global mid-

oceanic ridge system (8×109 cm), an assumed height of the melting triangle beneath mid-ocean 

ridges of 1×107 cm (Kelemen et al., 1997) and a width calculated assuming a 45-45-90 geometry, 

equating to a volume flux of 4×1017 cm3/y or a mass flux of 1.4×1018 g/y (for a bulk mantle density 

of 3.4 g/cm3). Dividing the 3He fluxes by the mass flux yields a potential 3He concentration range 

of 1.78-9.9×10-16 mol/g or a total 3He abundance range of 7.1-93.4×1011 mol in the modern mantle. 

The abundance calculation assumes that MORB mantle is the mass of the entire mantle (4×1027 

g). To convert the modern 3He abundance of the mantle to an integrated outgassing flux we 

consider both 96 and 99% outgassing. 

 With the estimates derived above for the integrated abundances of 3He and 22Ne outgassing 

from the mantle, we now quantify the 3He/22Ne ratio fluxed from the mantle over geologic time as 

a function of potential 3He flux (Figure S6). A successful model results in a 3He/22Ne ratio 

outgassed from the mantle lower than the assumed initial value (1.5). The lowest 3He flux estimate 

yields a 3He/22Ne ratio that is consistent with either 96 or 99% outgassing, whereas the highest 3He 

flux estimate yields 3He/22Ne ratios above the assumed initial 3He/22Ne. The most recent estimate 

of 3He flux is consistent with outgassing close to the 96% threshold. We conclude that the 

reconstructed atmosphere can host the complementary low 3He/22Ne component outgassed from 

the mantle provided 3He flux is at the low end of reported estimates or the extent of mantle 

outgassing is ~96%. However, considerations articulated below may relax this constraint. 

This is a simplified analysis meant to check if the outgassing of low 3He/22Ne component 

to the atmosphere violates mass balance. If the atmosphere or mantle had initially higher 20Ne/22Ne 

ratios, this would raise the 3He/22Ne ratio fluxed to the atmosphere. We stress that (1) the 
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primordial mantle 3He/22Ne ratio may have been higher than 1.5, perhaps due to nebular ingassing 

of a primordial magma ocean, or solubility-controlled degassing of a magma ocean (Tucker & 

Mukhopadhyay, 2014) and (2) that the melting triangle may extract 3He from significantly larger 

volumes of mantle than assumed here (Forsyth et al., 1998). Accounting for these effects would 

allow for successful models with higher 3He fluxes and higher extents of outgassing. 
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