1,675 research outputs found

    An approximate model for cancellous bone screw fixation

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement

    Tips for writing a case report for the novice author

    Get PDF
    A case report is a description of important scientific observations that are missed or undetectable in clinical trials. This includes a rare or unusual clinical condition, a previously unreported or unrecognized disease, unusual side effects to therapy or response to treatment, and unique use of imaging modalities or diagnostic tests to assist diagnosis of a disease. Generally, a case report should be short and focussed, with its main components being the abstract, introduction, case description, and discussion. This article discusses the essential components of a case report, with the aim of providing guidelines and tips to novice authors to improve their writing skills

    Crystal sedimentation and stone formation

    Get PDF
    Mechanisms of crystal collision being the first step of aggregation (AGN) were analyzed for calcium oxalate monohydrate (COM) directly produced in urine. COM was produced by oxalate titration in urine of seven healthy men, in solutions of urinary macromolecules and in buffered distilled water (control). Crystal formation and sedimentation were followed by a spectrophotometer and analyzed by scanning electron microscopy. Viscosity of urine was measured at 37°C. From results, sedimentation rate (vS), particle diffusion (D) and incidences of collision of particles in suspension by sedimentation (IS) and by diffusion (ID) were calculated. Calculations were related to average volume and urinary transit time of renal collecting ducts (CD) and of renal pelvis. vS was in urine 0.026 ± 0.012, in UMS 0.022 ± 0.01 and in control 0.091 ± 0.02 cm min−1 (mean ± SD). For urine, a D of 9.53 ± 0.97 μm within 1 min can be calculated. At maximal crystal concentration, IS was only 0.12 and ID was 0.48 min−1 cm−3 which, even at an unrealistic permanent and maximal crystalluria, would only correspond to less than one crystal collision/week/CD, whereas to the same tubular wall being in horizontal position 1.3 crystals/min and to a renal stone 624 crystals/cm2 min could drop by sedimentation. Sedimentation to renal tubular or pelvic wall, where crystals can accumulate and meet with a tissue calcification or a stone, is probably essential for stone formation. Since vS mainly depends on particle size, reducing urinary supersaturation and crystal growth by dietary oxalate restriction seems to be an important measure to prevent aggregation

    The native architecture of a photosynthetic membrane

    Get PDF
    In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll–protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10–20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)–light-harvesting 1 (RC–LH1–PufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow 'energy conduits' of LH2 just two or three complexes wide

    Experimental evidence for the preservation of U-Pb isotope ratios in mantle-recycled crustal zircon grains

    Get PDF
    Zircon of crustal origin found in mantle-derived rocks is of great interest because of the information it may provide about crust recycling and mantle dynamics. Consideration of this requires understanding of how mantle temperatures, notably higher than zircon crystallization temperatures, affected the recycled zircon grains, particularly their isotopic clocks. Since Pb2+ diffuses faster than U4+ and Th+4, it is generally believed that recycled zircon grains lose all radiogenic Pb after a few million years, thus limiting the time range over which they can be detected. Nonetheless, this might not be the case for zircon included in mantle minerals with low Pb2+ diffusivity and partitioning such as olivine and orthopyroxene because these may act as zircon sealants. Annealing experiments with natural zircon embedded in cristobalite (an effective zircon sealant) show that zircon grains do not lose Pb to their surroundings, although they may lose some Pb to molten inclusions. Diffusion tends to homogenize the Pb concentration in each grain changing the U-Pb and Th-Pb isotope ratios proportionally to the initial 206Pb, 207Pb and 208Pb concentration gradients (no gradient-no change) but in most cases the original age is still recognizable. It seems, therefore, that recycled crustal zircon grains can be detected, and even accurately dated, no matter how long they have dwelled in the mantle.This paper has been financed by the Spanish Grants CGL2013-40785-P and CGL2017-84469-P

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    Social prescribing in cardiology : rediscovering the nature of and within us

    Get PDF
    Personalised care is integral to the delivery of the NHSE Long Term Plan. Enabling choice and supporting patients to make decisions predicated on what matters to them, rather than what is the matter with them, is a fundamental part of the NHS vision. Social prescribing uses nonmedical, asset based, salutogenic approaches to promote this personalised paradigm, and places the patient central to decision making. We discuss how Personalised care can be used to help people with Cardiovascular Disease (CVD) using socially prescribed ‘nature-based’ interventions to support the prehabilitation and rehabilitation of patients with CVD. The concept of Personalised care outlined and the significance of salutogenic principles as complementary approach to the pathogenic model is discussed. We argue that this seemingly novel approach to using nature-based interventions can help promote wellbeing for people with CVD as part of the wider personalised agenda
    corecore