459 research outputs found
Pseudogap Formation in the Symmetric Anderson Lattice Model
We present self-consistent calculations for the self-energy and magnetic
susceptibility of the 2D and 3D symmetric Anderson lattice Hamiltonian, in the
fluctuation exchange approximation. At high temperatures, strong f-electron
scattering leads to broad quasiparticle spectral functions, a reduced
quasiparticle band gap, and a metallic density of states. As the temperature is
lowered, the spectral functions narrow and a pseudogap forms at the
characteristic temperature at which the width of the quasiparticle
spectral function at the gap edge is comparable to the renormalized activation
energy. For , the pseudogap is approximately equal to the
hybridization gap in the bare band structure. The opening of the pseudogap is
clearly apparent in both the spin susceptibility and the compressibility.Comment: RevTeX - 14 pages and 7 figures (available on request),
NRL-JA-6690-94-002
Antiferromagnetic Domains and Superconductivity in UPt3
We explore the response of an unconventional superconductor to spatially
inhomogeneous antiferromagnetism (SIAFM). Symmetry allows the superconducting
order parameter in the E-representation models for UPt3 to couple directly to
the AFM order parameter. The Ginzburg-Landau equations for coupled
superconductivity and SIAFM are solved numerically for two possible SIAFM
configurations: (I) abutting antiferromagnetic domains of uniform size, and
(II) quenched random disorder of `nanodomains' in a uniform AFM background. We
discuss the contributions to the free energy, specific heat, and order
parameter for these models. Neither model provides a satisfactory account of
experiment, but results from the two models differ significantly. Our results
demonstrate that the response of an E_{2u} superconductor to SIAFM is strongly
dependent on the spatial dependence of AFM order; no conclusion can be drawn
regarding the compatibility of E_{2u} superconductivity with UPt3 that is
independent of assumptions on the spatial dependence of AFMComment: 12 pages, 13 figures, to appear in Phys. Rev.
Los métodos de diagnóstico de la sarna sarcóptica en cerdos
Poster apresentado no II Congreso Ibérico de Epidemiologia Veterinária, que decorreu em Barcelona, na FVUAB de 2 a 5 de Fevereiro de 2010.El ácaro astigmatÃdeo Sarcoptes scabiei (Figura 1), que causa la sarna, es una
especie adaptada a diferentes hospedadores y con especial importancia en el cerdo.
La sarna es una enfermedad parasitaria de la piel comunes en los animales
estabulados o explotados en virtud de las malas condiciones de higiene y por lo
general se produce a finales de invierno o principios de primavera. La importancia
económica de la enfermedad se asocia con disminución en la producción, con la
devaluación de los canales en el matadero y el uso continuo de acaricidas en los
animales infectados (Damriyasa et al., 2004)
Surface superconductivity and order parameter suppression in UPt
We show that a recent measurement of surface superconductivity in UPt
(Keller {\it et. al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994)) can be
understood if the superconducting pair wavefunction is suppressed
anisotropically at a vacuum to superconductor interface. Further measurements
of surface superconductivity can distinguish between the various
phenomenological models of superconducting UPt.Comment: 4 pages, latex, 2 Figures available upon request
([email protected]
Effect of diffusive boundaries on surface superconductivity in unconventional superconductors
Boundary conditions for a superconducting order parameter at a diffusive
scattering boundary are derived from microscopic theory. The results indicate
that for all but isotropic gap functions the diffusive boundary almost
completely suppresses surface superconductivity in the Ginzburg-Landau regime.
This indicates that in anisotropic superconductors surface superconductivity
can only be observed for surface normals along high symmetry directions where
atomically clean surfaces can be cleaved.Comment: Latex File, 12 pages, 2 Postscript figures, to appear in Phys. Rev. B
(June 1 1996
The glassy response of solid He-4 to torsional oscillations
We calculated the glassy response of solid He-4 to torsional oscillations
assuming a phenomenological glass model. Making only a few assumptions about
the distribution of glassy relaxation times in a small subsystem of otherwise
rigid solid He-4, we can account for the magnitude of the observed period shift
and concomitant dissipation peak in several torsion oscillator experiments. The
implications of the glass model for solid He-4 are threefold: (1) The dynamics
of solid He-4 is governed by glassy relaxation processes. (2) The distribution
of relaxation times varies significantly between different torsion oscillator
experiments. (3) The mechanical response of a torsion oscillator does not
require a supersolid component to account for the observed anomaly at low
temperatures, though we cannot rule out its existence.Comment: 9 pages, 4 figures, presented at QFS200
The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties
We present results on thermodynamic quantities, resistivity and optical
conductivity for the Hubbard model on a simple hypercubic lattice in infinite
dimensions. Our results for the paramagnetic phase display the features
expected from an intuitive analysis of the one-particle spectra and
substantiate the similarity of the physics of the Hubbard model to those of
heavy fermion systems. The calculations were performed using an approximate
solution to the single-impurity Anderson model, which is the key quantity
entering the solution of the Hubbard model in this limit. To establish the
quality of this approximation we compare its results, together with those
obtained from two other widely used methods, to essentially exact quantum Monte
Carlo results.Comment: 29 pages, 16 figure
Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of
We discuss possible magnetic structures in UPt based on our analysis of
elastic neutron-scattering experiments in high magnetic fields at temperatures
. The existing experimental data can be explained by a single-{\bf q}
antiferromagnetic structure with three independent domains. For modest in-plane
spin-orbit interactions, the Zeeman coupling between the antiferromagnetic
order parameter and the magnetic field induces a rotation of the magnetic
moments, but not an adjustment of the propagation vector of the magnetic order.
A triple-{\bf q} magnetic structure is also consistent with neutron
experiments, but in general leads to a non-uniform magnetization in the
crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex
Atomic X-ray Spectroscopy of Accreting Black Holes
Current astrophysical research suggests that the most persistently luminous
objects in the Universe are powered by the flow of matter through accretion
disks onto black holes. Accretion disk systems are observed to emit copious
radiation across the electromagnetic spectrum, each energy band providing
access to rather distinct regimes of physical conditions and geometric scale.
X-ray emission probes the innermost regions of the accretion disk, where
relativistic effects prevail. While this has been known for decades, it also
has been acknowledged that inferring physical conditions in the relativistic
regime from the behavior of the X-ray continuum is problematic and not
satisfactorily constraining. With the discovery in the 1990s of iron X-ray
lines bearing signatures of relativistic distortion came the hope that such
emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity
in the strong field limit. Here we provide an introduction to this phenomenon.
While the presentation is intended to be primarily tutorial in nature, we aim
also to acquaint the reader with trends in current research. To achieve these
ends, we present the basic applications of general relativity that pertain to
X-ray spectroscopic observations of black hole accretion disk systems, focusing
on the Schwarzschild and Kerr solutions to the Einstein field equations. To
this we add treatments of the fundamental concepts associated with the
theoretical and modeling aspects of accretion disks, as well as relevant topics
from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian
Journal of Physics, in pres
- …