5,376 research outputs found

    The liquid-glass transition of silica

    Full text link
    We studied the liquid-glass transition of SiO2SiO_2 by means of replica theory, utilizing an effective pair potential which was proved to reproduce a few experimental features of silica. We found a finite critical temperature T0T_0, where the system undergoes a phase transition related to replica symmetry breaking, in a region where experiments do not show any transition. The possible sources of this discrepancy are discussed.Comment: 14 pages, 6 postscript figures. Revised version accepted for pubblication on J.Chem.Phy

    Local density of states in the vortex lattice in a type II superconductor

    Full text link
    Local density of states (LDOS) in the triangular vortex lattice is investigated based on the quasi-classical Eilenberger theory. We consider the case of an isotropic s-wave superconductor with the material parameter appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the LDOS shows cylindrical structure around a vortex core. On the other hand, at a high field where the core regions substantially overlap each other, the LDOS is sixfold star-shaped structure due to the vortex lattice effect. The orientation of the star coincides with the experimental data of the scanning tunneling microscopy. That is, the ray of the star extends toward the nearest-neighbor (next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure

    Hierarchy of Full Band Structure Models for Monte Carlo Simulation

    Get PDF
    This paper discusses the various hierarchy levels that are possible when the full band structure is considered. At the highest level, the scatterings are treated using complete k-k' transition rates, which entail extremely memory intensive computational applications. At the lowest level, the scattering anisotropy is neglected and the scattering rate is considered to be a constant average value on energy isosurfaces of the bandstructure. This model is more practical for device simulation. In between the two extremes, it is possible to design intermediate models which preserve some essential features of both. At all levels of the band structure hierarchy of models, there are similar issues of numerical noise, related to the sampling of real and momentum space that the Monte Carlo method necessarily performs with a relatively small number of particles. We discuss here computationally efficient approaches based on the assignment of variable weights to the simulated particles, in conjunction with careful gatherscatter procedures to split particles of large weight and combine particles of small weight

    Magnon Heat Transport in (Sr,La)_14Cu_24O_41

    Full text link
    We have measured the thermal heat conductivity kappa of the compounds Sr_14Cu_24O_41 and Ca_9La_5Cu_24O_41 containing doped and undoped spin ladders, respectively. We find a huge anisotropy of both, the size and the temperature dependence of kappa which we interpret in terms of a very large heat conductivity due to the magnetic excitations of the one-dimensional spin ladders. This magnon heat conductivity decreases with increasing hole doping of the ladders. The magnon heat transport is analyzed theoretically using a simple kinetic model. From this analysis we determine the spin gap and the temperature dependent mean free path of the magnons which ranges by several thousand angstroms at low temperature. The relevance of several scattering channels for the magnon transport is discussed.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Effects of gap anisotropy upon the electronic structure around a superconducting vortex

    Full text link
    An isolated single vortex is considered within the framework of the quasiclassical theory. The local density of states around a vortex is calculated in a clean type II superconductor with an anisotropy. The anisotropy of a superconducting energy gap is crucial for bound states around a vortex. A characteristic structure of the local density of states, observed in the layered hexagonal superconductor 2H-NbSe2 by scanning tunneling microscopy (STM), is well reproduced if one assumes an anisotropic s-wave gap in the hexagonal plane. The local density of states (or the bound states) around the vortex is interpreted in terms of quasiparticle trajectories to facilitate an understanding of the rich electronic structure observed in STM experiments. It is pointed out that further fine structures and extra peaks in the local density of states should be observed by STM.Comment: 11 pages, REVTeX; 20 PostScript figures; An Animated GIFS file for the star-shaped vortex bound states is available at http://mp.okayama-u.ac.jp/~hayashi/vortex.htm

    A schematic model for QCD at finite temperature

    Get PDF
    The simplest version of a class of toy models for QCD is presented. It is a Lipkin-type model, for the quark-antiquark sector, and, for the gluon sector, gluon pairs with spin zero are treated as elementary bosons. The model restricts to mesons with spin zero and to few baryonic states. The corresponding energy spectrum is discussed. We show that ground state correlations are essential to describe physical properties of the spectrum at low energies. Phase transitions are described in an effective manner, by using coherent states. The appearance of a Goldstone boson for large values of the interaction strength is discussed, as related to a collective state. The formalism is extended to consider finite temperatures. The partition function is calculated, in an approximate way, showing the convenience of the use of coherent states. The energy density, heat capacity and transitions from the hadronic phase to the quark-gluon plasma are calculated.Comment: 33 pages, 11 figure

    Eruptive shearing of tube pumice: pure and simple

    Get PDF
    Abstract. Understanding the physico-chemical conditions extant and mechanisms operative during explosive volcanism is essential for reliable forecasting and mitigation of volcanic events. Rhyolitic pumices reflect highly vesiculated magma whose bubbles can serve as a strain indicator for inferring the state of stress operative immediately prior to eruptive fragmentation. Obtaining the full kinematic picture reflected in bubble population geometry has been extremely difficult, involving dissection of a small number of delicate samples. The advent of reliable high-resolution tomography has changed this situation radically. Here we demonstrate via the use of tomography how a statistically powerful picture of the shapes and connectivity of thousands of individual bubbles within a single sample of tube pumice emerges. The strain record of tube pumice is dominated by simple shear (not pure shear) in the late deformational history of vesicular magma before eruption. This constraint in turn implies that magma ascent is conditioned by a velocity gradient at the point of origin of tube pumice. Magma ascent accompanied by simple shear should enhance high eruption rates inferred independently for these highly viscous systems. </jats:p
    • …
    corecore