388 research outputs found

    Deregulation of the HOXA9/MEIS1 Axis in Acute Leukemia

    Get PDF
    Purpose of review HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, where its over expression is strongly correlated with poor prognosis. This review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. Recent findings A variety of genetic alterations including MLL-translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 over expression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21 and mir-196b and many others provide another avenue for potential drug development. Summary HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies

    A new target for differentiation therapy in AML

    Get PDF
    Despite major advances in understanding the genetics and epigenetics of acute myelogenous leukemia, there is still a great need to develop more specific and effective therapies. High throughput approaches involving either genetic approaches or small molecule inhibitor screens are beginning to identify promising new therapeutic targets

    HoxA9 binds and represses the Cebpa +8 kb enhancer

    Get PDF
    C/EBPα plays a key role in specifying myeloid lineage development. HoxA9 is expressed in myeloid progenitors, with its level diminishing during myeloid maturation, and HOXA9 is over-expressed in a majority of acute myeloid leukemia cases, including those expressing NUP98-HOXD13. The objective of this study was to determine whether HoxA9 directly represses Cebpa gene expression. We find 4-fold increased HoxA9 and 5-fold reduced Cebpa in marrow common myeloid and LSK progenitors from Vav-NUP98-HOXD13 transgenic mice. Conversely, HoxA9 decreases 5-fold while Cebpa increases during granulocytic differentiation of 32Dcl3 myeloid cells. Activation of exogenous HoxA9-ER in 32Dcl3 cells reduces Cebpa mRNA even in the presence of cycloheximide, suggesting direct repression. Cebpa transcription in murine myeloid cells is regulated by a hematopoietic-specific +37 kb enhancer and by a more widely active +8 kb enhancer. ChIP-Seq analysis of primary myeloid progenitor cells expressing exogenous HoxA9 or HoxA9-ER demonstrates that HoxA9 localizes to both the +8 kb and +37 kb Cebpa enhancers. Gel shift analysis demonstrates HoxA9 binding to three consensus sites in the +8 kb enhancer, but no affinity for the single near-consensus site present in the +37 kb enhancer. Activity of a Cebpa +8 kb enhancer/promoter-luciferase reporter in 32Dcl3 or MOLM14 myeloid cells is increased ~2-fold by mutation of its three HOXA9-binding sites, suggesting that endogenous HoxA9 represses +8 kb Cebpa enhancer activity. In contrast, mutation of five C/EBPα-binding sites in the +8 kb enhancer reduces activity 3-fold. Finally, expression of a +37 kb enhancer/promoter-hCD4 transgene reporter is reduced ~2-fold in marrow common myeloid progenitors when the Vav-NUP98-HOXD13 transgene is introduced. Overall, these data support the conclusion that HoxA9 represses Cebpa expression, at least in part via inhibition of its +8 kb enhancer, potentially allowing normal myeloid progenitors to maintain immaturity and contributing to the pathogenesis of acute myeloid leukemia associated with increased HOXA9

    The Impact of Consumer Product Package Quality on Consumption Satisfaction, Brand Perceptions, Consumer Investment and Behavior

    Get PDF
    Consumer product packaging can serve a critical role in the consumption experience, but marketing and packaging science researchers focus primarily on pre and post-consumption aspects of consumer product containers. Exhaustive research into packing ergonomics, logistics, safety, sustainability and promotional features are common across marketing and packaging disciplines, but research isolating the role of a packaging in consumption satisfaction and enduring consumer-brand relationships is rare. In addition to an undervalued role in product satisfaction, functional isolation between marketing and packaging scientists limits packaging’s overall impact on the bottom line. This research examines the role of bottle quality in bottled-water consumption satisfaction and its subsequent impact on brand attribute perceptions, consumer-brand relationship investment and behavioral intentions. We show that thicker water bottles are perceived to be of higher quality than thinner bottles, and that these perceptual differences impact how customers view a brand on aspects such as reliability and value offered by the brand’s products and ultimately intentions to re-purchase the brand’s products. We use qualitative, experimental and structural modeling analysis techniques to establish a fundamental role of packaging quality in consumer product satisfaction. We show that packaging characteristics are an indivisible component of the product and important to evaluation of the overall consumption experience. We finally conclude that packaging quality has a critical role to play in building profitable consumer-brand relationships, which should redefine the packaging cost-benefit equation to include the value of consumer loyalty as a balance to non-consumption packaging considerations

    C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis

    Get PDF
    Homeobox A9 (HOXA9) is a homeodomain-containing transcription factor that plays a key role in hematopoietic stem cell expansion and is commonly deregulated in human acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia (AML) lead to overexpression of HOXA9, almost always in association with overexpression of its cofactor meis homeobox 1 (MEIS1) . A wide range of data suggests that HOXA9 and MEIS1 play a synergistic causative role in AML, although the molecular mechanisms leading to transformation by HOXA9 and MEIS1 remain elusive. In this study, we identify CCAAT/enhancer binding protein alpha (C/EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated leukemogenesis. We show that C/EBPα is required for the proliferation of Hoxa9/Meis1-transformed cells in culture and that loss of C/EBPα greatly improves survival in both primary and secondary murine models of Hoxa9/Meis1-induced leukemia. Over 50% of Hoxa9 genome-wide binding sites are cobound by C/EBPα, which coregulates a number of downstream target genes involved in the regulation of cell proliferation and differentiation. Finally, we show that Hoxa9 represses the locus of the cyclin-dependent kinase inhibitors Cdkn2a/b in concert with C/EBPα to overcome a block in G1 cell cycle progression. Together, our results suggest a previously unidentified role for C/EBPα in maintaining the proliferation required for Hoxa9/Meis1-mediated leukemogenesis

    The protective role of DOT1L in UV-induced melanomagenesis

    Get PDF
    The DOT1L histone H3 lysine 79 (H3K79) methyltransferase plays an oncogenic role in MLL-rearranged leukemogenesis. Here, we demonstrate that, in contrast to MLL-rearranged leukemia, DOT1L plays a protective role in ultraviolet radiation (UVR)-induced melanoma development. Specifically, the DOT1L gene is located in a frequently deleted region and undergoes somatic mutation in human melanoma. Specific mutations functionally compromise DOT1L methyltransferase enzyme activity leading to reduced H3K79 methylation. Importantly, in the absence of DOT1L, UVR-induced DNA damage is inefficiently repaired, so that DOT1L loss promotes melanoma development in mice after exposure to UVR. Mechanistically, DOT1L facilitates DNA damage repair, with DOT1L-methylated H3K79 involvement in binding and recruiting XPC to the DNA damage site for nucleotide excision repair (NER). This study indicates that DOT1L plays a protective role in UVR-induced melanomagenesis

    Medical School Without Walls: 50 Years of Regional Campuses at Indiana University School of Medicine

    Get PDF
    The history of Indiana University School of Medicine (IUSM) dates to 1871, when Indiana Medical College entered into an affiliation with Indiana University in Bloomington to offer medical education. In 1971, the Indiana General Assembly passed a bill to create and fund a distributed model for medical education for which IUSM was responsible, an innovative approach to implementing a statewide medical education program. IUSM became one of the first U.S. medical schools to implement what is today known as a regional medical campus model. This regional medical campus system has permitted IUSM to expand enrollment based on national and local concerns about physician shortages, increase access to care locally, support expansion of graduate medical education, and provide opportunities for research and scholarship by faculty and students statewide. This effort was made possible by partnerships with other universities and health care systems across the state and the support of local community and state leaders. The model is a forward-thinking and cost-effective way to educate physicians for service in the state of Indiana and is applicable to others. This article highlights milestones in IUSM’s 50-year history of regional medical education, describes the development of the regional medical campus model, recognizes significant achievements over the years, shares lessons learned, and discusses considerations for the future of medical education

    Update to the study protocol for an implementation-effectiveness trial comparing two education strategies for improving the uptake of noninvasive ventilation in patients with severe COPD exacerbation

    Get PDF
    BACKGROUND: There is strong evidence that noninvasive ventilation (NIV) improves the outcomes of patients hospitalized with severe COPD exacerbation, and NIV is recommended as the first-line therapy for these patients. Yet, several studies have demonstrated substantial variation in NIV use across hospitals, leading to preventable morbidity and mortality. In addition, prior studies suggested that efforts to increase NIV use in COPD need to account for the complex and interdisciplinary nature of NIV delivery and the need for team coordination. Therefore, our initial project aimed to compare two educational strategies: online education (OLE) and interprofessional education (IPE), which targets complex team-based care in NIV delivery. Due to the impact of the COVID-19 pandemic on recruitment and planned intervention, we had made several changes in the study design, statistical analysis, and implementation strategies delivery as outlined in the methods. METHODS: We originally proposed a two-arm, pragmatic, cluster, randomized hybrid implementation-effectiveness trial comparing two education strategies to improve NIV uptake in patients with severe COPD exacerbation in 20 hospitals with a low baseline rate of NIV use. Due to logistical constrains and slow recruitment, we changed the study design to an opened cohort stepped-wedge design with three steps which will allow the institutions to enroll when they are ready to participate. Only the IPE strategy will be implemented, and the education will be provided in an online virtual format. Our primary outcome will be the hospital-level risk-standardized NIV proportion for the period post-IPE training, along with the change in rate from the period prior to training. Aim 1 will compare the change over time of NIV use among patients with COPD in the step-wedged design. Aim 2 will explore the mediators\u27 role (respiratory therapist autonomy and team functionality) on the relationship between the implementation strategies and effectiveness. Finally, in Aim 3, through interviews with providers, we will assess the acceptability and feasibility of the educational training. CONCLUSION: The changes in study design will result in several limitation. Most importantly, the hospitals in the three cohorts are not randomized as they enroll based on their readiness. Second, the delivery of the IPE is virtual, and it is not known if remote education is conducive to team building. However, this study will be among the first to test the impact of IPE in the inpatient setting carefully and may generalize to other interventions directed to seriously ill patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04206735 . Registered on December 20, 2019

    HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis

    Get PDF
    Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program. We show that HOXA9 functions as a pioneer factor at de novo enhancers and recruits CEBPα and the MLL3/MLL4 complex. Genetic deletion of MLL3/MLL4 blocks histone H3K4 methylation at de novo enhancers and inhibits HOXA9/MEIS1-mediated leukemogenesis in vivo. These results suggest that therapeutic targeting of HOXA9-dependent enhancer reorganization can be an effective therapeutic strategy in acute leukemia with HOXA9 overexpressio
    • …
    corecore