15,545 research outputs found

    Jupiter's radiation belts: Can Pioneer 10 survive?

    Get PDF
    Model calculations of Jupiter's electron and proton radiation belts indicate that the Galilean satellites can reduce particle fluxes in certain regions of the inner magnetosphere by as much as six orders of magnitude. Average fluxes should be reduced by a factor of 100 or more along the Pioneer 10 trajectory through the heart of Jupiter's radiation belts in early December. This may be enough to prevent serious radiation damage to the spacecraft

    Absorption of trapped particles by Jupiter's moons

    Get PDF
    Absorption effects of the four innermost moons in the radial transport equations for electrons and protons in Jupiter's magnetosphere are presented. The phase space density n at 2 R sub J for electrons with equatorial pitch angles less than 69 deg is reduced by a factor of 4.2 x 1000 when lunar absorption is included in the calculation. For protons with equatorial pitch angles less than 69 deg, the corresponding reduction factor is 3.2 x 100000. The effect of the satellites becomes progressively weaker for both electrons and protons as equatorial pitch angles of pi/2 are approached, because the likelihood of impacting a satellite becomes progressively smaller. The large density decreases which we find at the orbits of Io, Europa, and Ganymede result in corresponding particle flux decreases that should be observed by spacecraft making particle measurements in Jupiter's magnetosphere. The characteristic signature of satellite absorption should be a downward pointing cusp in the flux versus radius curve at the L-value corresponding to each satellite

    Comment on "Exclusion of time in the theorem of Bell" by K. Hess and W. Philipp

    Full text link
    A recent Letter by Hess and Philipp claims that Bell's theorem neglects the possibility of time-like dependence in local hidden variables, hence is not conclusive. Moreover the authors claim that they have constructed, in an earlier paper, a local realistic model of the EPR correlations. However, they themselves have neglected the experimenter's freedom to choose settings, while on the other hand, Bell's theorem can be formulated to cope with time-like dependence. This in itself proves that their toy model cannot satisfy local realism, but we also indicate where their proof of its local realistic nature fails.Comment: Latex needs epl.cl

    Scaling behavior of interactions in a modular quantum system and the existence of local temperature

    Get PDF
    We consider a quantum system of fixed size consisting of a regular chain of nn-level subsystems, where nn is finite. Forming groups of NN subsystems each, we show that the strength of interaction between the groups scales with N1/2N^{- 1/2}. As a consequence, if the total system is in a thermal state with inverse temperature β\beta, a sufficient condition for subgroups of size NN to be approximately in a thermal state with the same temperature is NβδEˉ\sqrt{N} \gg \beta \bar{\delta E}, where δEˉ\bar{\delta E} is the width of the occupied level spectrum of the total system. These scaling properties indicate on what scale local temperatures may be meaningfully defined as intensive variables. This question is particularly relevant for non-equilibrium scenarios such as heat conduction etc.Comment: 7 pages, accepted for publication in Europhysics Letter

    Star-shaped Local Density of States around Vortices in a Type II Superconductor

    Full text link
    The electronic structure of vortices in a type II superconductor is analyzed within the quasi-classical Eilenberger framework. The possible origin of a sixfold ``star'' shape of the local density of states, observed by scanning tunneling microscope experiments on NbSe2_2, is examined in the light of the three effects; the anisotropic pairing, the vortex lattice, and the anisotropic density of states at the Fermi surface. Outstanding features of split parallel rays of this star are well explained in terms of an anisotropic ss-wave pairing. This reveals a rich internal electronic structure associated with a vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques

    A Coupled Map Lattice Model for Rheological Chaos in Sheared Nematic Liquid Crystals

    Full text link
    A variety of complex fluids under shear exhibit complex spatio-temporal behaviour, including what is now termed rheological chaos, at moderate values of the shear rate. Such chaos associated with rheological response occurs in regimes where the Reynolds number is very small. It must thus arise as a consequence of the coupling of the flow to internal structural variables describing the local state of the fluid. We propose a coupled map lattice (CML) model for such complex spatio-temporal behaviour in a passively sheared nematic liquid crystal, using local maps constructed so as to accurately describe the spatially homogeneous case. Such local maps are coupled diffusively to nearest and next nearest neighbours to mimic the effects of spatial gradients in the underlying equations of motion. We investigate the dynamical steady states obtained as parameters in the map and the strength of the spatial coupling are varied, studying local temporal properties at a single site as well as spatio-temporal features of the extended system. Our methods reproduce the full range of spatio-temporal behaviour seen in earlier one-dimensional studies based on partial differential equations. We report results for both the one and two-dimensional cases, showing that spatial coupling favours uniform or periodically time-varying states, as intuitively expected. We demonstrate and characterize regimes of spatio-temporal intermittency out of which chaos develops. Our work suggests that such simplified lattice representations of the spatio-temporal dynamics of complex fluids under shear may provide useful insights as well as fast and numerically tractable alternatives to continuum representations.Comment: 32 pages, single column, 20 figure

    Comparison between wind waves at sea and in the laboratory

    Get PDF
    Correlations between laboratory and geophysical data are presented for certain statistical properties of wind waves. The parameters chosen include: (i) relationships between wave height and the height of the highest one-third or one-tenth waves, as given by a Rayleigh probability distribution, and (ii) amplitude spectra for waves, as given by Phillips\u27 equilibrium theory. The correlation between laboratory results and geophysical data is satisfactory over a wide range of wave size

    What Influences the Diffusion of Grassroots Innovations for Sustainability? Investigating Community Currency Niches

    Get PDF
    Community action for sustainability is a promising site of socio-technical innovation. Here we test the applicability of co-evolutionary niche theories of innovation diffusion (Strategic Niche Management, SNM) to the context of ‘grassroots innovations’. We present new empirical findings from an international study of 12 community currency niches (such as LETS, time banks, local currencies). These are parallel systems of exchange, designed to operate alongside mainstream money, meeting additional sustainability needs. Our findings confirm SNM predictions that niche-level activity correlates with diffusion success, but we highlight additional or confounding factors, and how niche theories might be adapted to better fit civil-society innovations. In so doing, we develop a model of grassroots innovation niche diffusion which builds on existing work and tailors it to this specific context. The paper concludes with a series of theoretically-informed recommendations for practitioners and policymakers to support the development and potential of grassroots innovations
    corecore