13,117 research outputs found

    Star-shaped Local Density of States around Vortices in a Type II Superconductor

    Full text link
    The electronic structure of vortices in a type II superconductor is analyzed within the quasi-classical Eilenberger framework. The possible origin of a sixfold ``star'' shape of the local density of states, observed by scanning tunneling microscope experiments on NbSe2_2, is examined in the light of the three effects; the anisotropic pairing, the vortex lattice, and the anisotropic density of states at the Fermi surface. Outstanding features of split parallel rays of this star are well explained in terms of an anisotropic ss-wave pairing. This reveals a rich internal electronic structure associated with a vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Local density of states in the vortex lattice in a type II superconductor

    Full text link
    Local density of states (LDOS) in the triangular vortex lattice is investigated based on the quasi-classical Eilenberger theory. We consider the case of an isotropic s-wave superconductor with the material parameter appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the LDOS shows cylindrical structure around a vortex core. On the other hand, at a high field where the core regions substantially overlap each other, the LDOS is sixfold star-shaped structure due to the vortex lattice effect. The orientation of the star coincides with the experimental data of the scanning tunneling microscopy. That is, the ray of the star extends toward the nearest-neighbor (next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure

    Magnetic heat conductivity in CaCu2O3\rm\bf CaCu_2O_3: linear temperature dependence

    Full text link
    We present experimental results for the thermal conductivity κ\kappa of the pseudo 2-leg ladder material CaCu2O3\rm CaCu_2O_3. The strong buckling of the ladder rungs renders this material a good approximation to a S=1/2S=1/2 Heisenberg-chain. Despite a strong suppression of the thermal conductivity of this material in all crystal directions due to inherent disorder, we find a dominant magnetic contribution κmag\kappa_\mathrm{mag} along the chain direction. κmag\kappa_\mathrm{mag} is \textit{linear} in temperature, resembling the low-temperature limit of the thermal Drude weight DthD_\mathrm{th} of the S=1/2S=1/2 Heisenberg chain. The comparison of κmag\kappa_\mathrm{mag} and DthD_\mathrm{th} yields a magnetic mean free path of lmag≈22±5l_\mathrm{mag}\approx 22 \pm 5 \AA, in good agreement with magnetic measurements.Comment: appears in PR

    A Coupled Map Lattice Model for Rheological Chaos in Sheared Nematic Liquid Crystals

    Full text link
    A variety of complex fluids under shear exhibit complex spatio-temporal behaviour, including what is now termed rheological chaos, at moderate values of the shear rate. Such chaos associated with rheological response occurs in regimes where the Reynolds number is very small. It must thus arise as a consequence of the coupling of the flow to internal structural variables describing the local state of the fluid. We propose a coupled map lattice (CML) model for such complex spatio-temporal behaviour in a passively sheared nematic liquid crystal, using local maps constructed so as to accurately describe the spatially homogeneous case. Such local maps are coupled diffusively to nearest and next nearest neighbours to mimic the effects of spatial gradients in the underlying equations of motion. We investigate the dynamical steady states obtained as parameters in the map and the strength of the spatial coupling are varied, studying local temporal properties at a single site as well as spatio-temporal features of the extended system. Our methods reproduce the full range of spatio-temporal behaviour seen in earlier one-dimensional studies based on partial differential equations. We report results for both the one and two-dimensional cases, showing that spatial coupling favours uniform or periodically time-varying states, as intuitively expected. We demonstrate and characterize regimes of spatio-temporal intermittency out of which chaos develops. Our work suggests that such simplified lattice representations of the spatio-temporal dynamics of complex fluids under shear may provide useful insights as well as fast and numerically tractable alternatives to continuum representations.Comment: 32 pages, single column, 20 figure

    Cadmium electrode mechanism electrode morphology and capacity Final report

    Get PDF
    Morphology and capacity of cadmium electrodes on repeated charge and discharg

    What Influences the Diffusion of Grassroots Innovations for Sustainability? Investigating Community Currency Niches

    Get PDF
    Community action for sustainability is a promising site of socio-technical innovation. Here we test the applicability of co-evolutionary niche theories of innovation diffusion (Strategic Niche Management, SNM) to the context of ‘grassroots innovations’. We present new empirical findings from an international study of 12 community currency niches (such as LETS, time banks, local currencies). These are parallel systems of exchange, designed to operate alongside mainstream money, meeting additional sustainability needs. Our findings confirm SNM predictions that niche-level activity correlates with diffusion success, but we highlight additional or confounding factors, and how niche theories might be adapted to better fit civil-society innovations. In so doing, we develop a model of grassroots innovation niche diffusion which builds on existing work and tailors it to this specific context. The paper concludes with a series of theoretically-informed recommendations for practitioners and policymakers to support the development and potential of grassroots innovations

    JPL preferred parts list: Reliable electronic components

    Get PDF
    The JPL Preferred Parts List was prepared to provide a basis for selection of electronic parts for JPL spacecraft programs. Supporting tests for the listed parts were designed to comply with specific spacecraft environmental requirements. The list tabulates the electronic, magnetic, and electromechanical parts applicable to all JPL electronic equipment wherein reliability is a major concern. The parts listed are revelant to equipment supplied by subcontractors as well as fabricated at the laboratory

    Basic ideas and tools for projection-based model reduction of parametric partial differential equations

    Get PDF
    We provide first the functional analysis background required for reduced order modeling and present the underlying concepts of reduced basis model reduction. The projection-based model reduction framework under affinity assumptions, offline-online decomposition and error estimation is introduced. Several tools for geometry parametrizations, such as free form deformation, radial basis function interpolation and inverse distance weighting interpolation are explained. The empirical interpolation method is introduced as a general tool to deal with non-affine parameter dependency and non-linear problems. The discrete and matrix versions of the empirical interpolation are considered as well. Active subspaces properties are discussed to reduce high-dimensional parameter spaces as a pre-processing step. Several examples illustrate the methodologies
    • …
    corecore