310 research outputs found

    A Phase Lag between Disk and Corona in GRMHD Simulations of Precessing Tilted Accretion Disks

    Full text link
    In the course of its evolution, a black hole (BH) accretes gas from a wide range of directions. Given a random accretion event, the typical angular momentum of an accretion disc would be tilted by \sim60^\circ relative to the BH spin. Misalignment causes the disc to precess at a rate that increases with BH spin and tilt angle. We present the first general-relativistic magnetohydrodynamic (GRMHD) simulations spanning a full precession period of highly tilted (60^\circ), moderately thin (h/r=0.1h/r=0.1) accretion discs around a rapidly spinning (a0.9a\simeq0.9) BH. While the disc and jets precess in phase, we find that the corona, sandwiched between the two, lags behind by 10\gtrsim 10^{\circ}. For spectral models of BH accretion, the implication is that hard non-thermal (corona) emission lags behind the softer (disc) emission, thus potentially explaining some properties of the hard energy lags seen in Type-C low frequency quasi-periodic oscillations in X-Ray binaries. While strong jets are unaffected by this disc-corona lag, weak jets stall when encountering the lagging corona at distances r100r \sim 100 black hole radii. This interaction may quench large-scale jet formation.Comment: 5 pages, 4 figures, submitted to MNRAS, see YouTube playlist for 3D renderings: https://www.youtube.com/playlist?list=PLDO1oeU33GwmwOV_Hp9s7572JdU8JPSS

    Observational signatures of disk and jet misalignment in images of accreting black holes

    Get PDF
    Black hole accretion is one of nature's most efficient energy extraction processes. When gas falls in, a significant fraction of its gravitational binding energy is either converted into radiation or flows outwards in the form of black hole-driven jets and disk-driven winds. Recently, the Event Horizon Telescope (EHT), an Earth-size sub-millimetre radio interferometer, captured the first images of M87's black hole. These images were analysed and interpreted using general-relativistic magnetohydrodynamics (GRMHD) models of accretion disks with rotation axes aligned with the black hole spin axis. However, since infalling gas is often insensitive to the black hole spin direction, misalignment between accretion disk and black hole spin may be a common occurrence in nature. In this work, we use the general-relativistic radiative transfer (GRRT) code \texttt{BHOSS} to calculate the first synthetic radio images of (highly) tilted disk/jet models generated by our GPU-accelerated GRMHD code \texttt{HAMR}. While the tilt does not have a noticeable effect on the system dynamics beyond a few tens of gravitational radii from the black hole, the warping of the disk and jet can imprint observable signatures in EHT images on smaller scales. Comparing the images from our GRMHD models to the 43 GHz and 230 GHz EHT images of M87, we find that M87 may feature a tilted disk/jet system. Further, tilted disks and jets display significant time variability in the 230 GHz flux that can be further tested by longer-duration EHT observations of M87

    Minimal Model for Sand Dunes

    Full text link
    We propose a minimal model for aeolian sand dunes. It combines an analytical description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The model provides a qualitative understanding of important features of real dunes, such as their longitudinal shape and aspect ratio, the formation of a slip face, the breaking of scale invariance, and the existence of a minimum dune size.Comment: 4 pages, 4 figures, replaced with publishd versio

    Templated Quasicrystalline Molecular Ordering

    Get PDF
    Quasicrystals are materials with long-range ordering but no periodicity. We report scanning tunneling microscopy (STM) observations of quasicrystalline molecular layers on 5-fold quasicrystal surfaces. The molecules adopt positions and orientations on the surface consistent with the quasicrystalline ordering of the substrate. Carbon-60 adsorbs atop sufficiently separated Fe atoms on icosahedral Al−Cu−Fe to form a unique quasicrystalline lattice, whereas further C60 molecules decorate remaining surface Fe atoms in a quasi-degenerate fashion. Pentacene (Pn) adsorbs at 10-fold symmetric points around surface-bisected rhombic triacontahedral clusters in icosahedral Ag−In−Yb. These systems constitute the first demonstrations of quasicrystalline molecular ordering on a templat

    Corridors of barchan dunes: stability and size selection

    Get PDF
    Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two instabilities take place. First, barchans receive a sand flux at their back proportional to their width while the sand escapes only from their horns. Large dunes proportionally capture more than they loose sand, while the situation is reversed for small ones: therefore, solitary dunes cannot remain in a steady state. Second, the propagation speed of dunes decreases with the size of the dune: this leads -- through the collision process -- to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further - yet unknown - mechanisms regulating and selecting the size of dunes.Comment: 13 pages, 13 figures. New version resubmitted to Phys. Rev. E. Pictures of better quality available on reques

    Event‐scale dynamics of a parabolic dune and its relevance for mesoscale evolution

    Get PDF
    Parabolic dunes are wide-spread aeolian landforms found in a variety of environments. Despite modelling advances and good understanding of how they evolve, there is limited empirical data on their dynamics at short time-scales of hours, and on how these dynamics relate to their medium-term evolution. This study presents the most comprehensive dataset to date on aeolian processes (airflow and sediment transport) inside a parabolic dune at an event-scale. This is coupled with information on elevation changes inside the landform to understand its morphological response to a single wind event. Results are contextualized against the medium-term (years) allowing us to investigate one of the most persistent conundrums in geomorphology, that of the significance of short-term findings for landform evolution. Our field data suggested three key findings: 1) sediment transport rates inside parabolic dunes correlate well with wind speeds rather than turbulence; 2) up to several tonnes of sand can move through these landforms in a few hours; 3) short-term elevation changes inside parabolic dunes can be complex and different from long-term net spatial patterns, including simultaneous erosion and accumulation along the same wall. Modeled airflow patterns along the basin were similar to those measured in situ for a range of common wind directions, demonstrating the potential for strong transport during multiple events. Meso-scale analyses suggested that the measured event was representative of the type of events potentially driving significant geomorphic changes over years, with supply-limiting conditions playing an important role in resultant flux amounts
    corecore