470 research outputs found

    Imaging and manipulation of skyrmion lattice domains in Cu2OSeO3

    Full text link
    Nanoscale chiral skyrmions in noncentrosymmetric helimagnets are promising binary state variables in high-density, low-energy nonvolatile memory. Skyrmions are ubiquitous as an ordered, single-domain lattice phase, which makes it difficult to write information unless they are spatially broken up into smaller units, each representing a bit. Thus, the formation and manipulation of skyrmion lattice domains is a prerequisite for memory applications. Here, using an imaging technique based on resonant magnetic x-ray diffraction, we demonstrate the mapping and manipulation of skyrmion lattice domains in Cu2OSeO3. The material is particularly interesting for applications owing to its insulating nature, allowing for electric field-driven domain manipulation.Comment: 4 pages, 3 figure

    Reciprocal space mapping of magnetic order in thick epitaxial MnSi films

    Full text link
    We report grazing incidence small angle neutron scattering (GISANS) and complementary off-specular neutron reflectometry (OSR) of the magnetic order in a single-crystalline epitaxial MnSi film on Si(111) in the thick film limit. Providing a means of direct reciprocal space mapping, GISANS and OSR reveal a magnetic modulation perpendicular to the films under magnetic fields parallel and perpendicular to the film, where additional polarized neutron reflectometry (PNR) and magnetization measurements are in excellent agreement with the literature. Regardless of field orientation, our data does not suggest the presence of more complex spin textures, notably the formation of skyrmions. This observation establishes a distinct difference with bulk samples of MnSi of similar thickness under perpendicular field, in which a skyrmion lattice dominates the phase diagram. Extended x-ray absorption fine structure measurements suggest that small shifts of the Si positions within the unstrained unit cell control the magnetic state, representing the main difference between the films and thin bulk samples

    Expanding the Lorentz concept in magnetism

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordIn 1878, the Dutch physicist Hendrik Antoon Lorentz first addressed the calculation of the local electric field at an atomic site in a ferroelectric material, generated by all the other electric dipoles within the sample. This calculation, which applies equally well to ferromagnets, is taught in Universities around the World. Here we demonstrate that the Lorentz concept can be used to speed up calculations of the local dipolar field in square, circular, and elliptical shaped monolayers and thin films, not only at the center of the film, but across the sample. Calculations show that long elliptical and rectangular films should exhibit the narrowest ferromagnetic resonance (FMR) linewidth. In addition, discrete dipole calculations show that the Lorentz cavity field (μ0M/3)\left({\mu }_{0}M/3\right) does not hold in tetragonal films. Depending on the ratio (b/a), the local field can be either less/greater than (μ0M/3):\left({\mu }_{0}M/3\right): an observation that has implications for FMR. 3D simple cubic (SC) systems are also examined. For example, while most texts discuss the Lorentz cavity field in terms of a Lorentz sphere, the Lorentz cavity field still holds when a Lorentz sphere is replaced by a the Lorentz cube, but only in cubic SC, FCC and BCC systems. Finally, while the primary emphasis is on the discrete dipole–dipole interaction, contact is made with the continuum model. For example, in the continuous SC dipole model, just one monolayer is required to generate the Lorentz cavity field. This is in marked contrast to the discrete dipole model, where a minimum of five adjacent monolayers is required.Engineering and Physical Sciences Research Council (EPSRC

    Magnetic soliton layers in epitaxial MnSi

    Get PDF

    Ultrahigh magnetic field spectroscopy reveals the band structure of the 3D topological insulator Bi2_2Se3_3

    Full text link
    We have investigated the band structure at the Γ\Gamma point of the three-dimensional (3D) topological insulator Bi2_2Se3_3 using magneto-spectroscopy over a wide range of energies (0.55−2.20.55-2.2\,eV) and in ultrahigh magnetic fields up to 150\,T. At such high energies (E>0.6E>0.6\,eV) the parabolic approximation for the massive Dirac fermions breaks down and the Landau level dispersion becomes nonlinear. At even higher energies around 0.99 and 1.6 eV, new additional strong absorptions are observed with a temperature and magnetic-field dependence which suggest that they originate from higher band gaps. Spin orbit splittings for the further lying conduction and valence bands are found to be 0.196 and 0.264 eV

    Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure

    Full text link
    We report a study of the strain state of epitaxial MnSi films on Si(111) substrates in the thick film limit (100-500~\AA) as a function of film thickness using polarization-dependent extended x-ray absorption fine structure (EXAFS). All films investigated are phase-pure and of high quality with a sharp interface between MnSi and Si. The investigated MnSi films are in a thickness regime where the magnetic transition temperature TcT_\mathrm{c} assumes a thickness-independent enhanced value of ≥\geq43~K as compared with that of bulk MnSi, where Tc≈29 KT_\mathrm{c} \approx 29~{\rm K}. A detailed refinement of the EXAFS data reveals that the Mn positions are unchanged, whereas the Si positions vary along the out-of-plane [111]-direction, alternating in orientation from unit cell to unit cell. Thus, for thick MnSi films, the unit cell volume is essentially that of bulk MnSi --- except in the vicinity of the interface with the Si substrate (thin film limit). In view of the enhanced magnetic transition temperature we conclude that the mere presence of the interface, and its specific characteristics, strongly affects the magnetic properties of the entire MnSi film, even far from the interface. Our analysis provides invaluable information about the local strain at the MnSi/Si(111) interface. The presented methodology of polarization dependent EXAFS can also be employed to investigate the local structure of other interesting interfaces.Comment: 11 pages, 10 figure

    Three-dimensional structure of magnetic skyrmions

    Get PDF
    Magnetic skyrmions (skyrmions hereafter) are magnetization configurations, whose topological robustness and nanoscale size have led to speculation that they could find use as a next-generation information carrier. Skyrmions have been observed in magnetic multilayer materials that are thin compared to the radius of a skyrmion, and chiral cubic single crystals that can be far larger than any characteristic skyrmion scale. In these single crystals, one would expect that skyrmions could exhibit interesting three-dimensional (3D) characteristics. Here, the symmetry of the micromagnetic free energy is investigated. This symmetry permits a complex 3D modulation of a skyrmion string, which we show to be a requirement of a skyrmion coexisting with the conical state. We discuss the implications of this modulation with respect to Thiele\u27s equation and interskyrmion interactions. Further to this internal modulation, we study theoretically and show experimentally that the strings themselves must contort towards the surfaces of their confining crystals
    • …
    corecore