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Abstract

In 1878, the Dutch physicist Hendrik Antoon Lorentz first addressed the calculation of the local
electric field at an atomic site in a ferroelectric material, generated by all the other electric dipoles
within the sample. This calculation, which applies equally well to ferromagnets, is taught in
Universities around the World. Here we demonstrate that the Lorentz concept can be used to speed up
calculations of the local dipolar field in square, circular, and elliptical shaped monolayers and thin
films, not only at the center of the film, but across the sample. Calculations show that long elliptical
and rectangular films should exhibit the narrowest ferromagnetic resonance (FMR) linewidth. In
addition, discrete dipole calculations show that the Lorentz cavity field (14,M /3) does not hold in
tetragonal films. Depending on the ratio (b/a), the local field can be either less/greater than (M /3):
an observation that has implications for FMR. 3D simple cubic (SC) systems are also examined. For
example, while most texts discuss the Lorentz cavity field in terms of a Lorentz sphere, the Lorentz
cavity field still holds when a Lorentz sphere is replaced by a the Lorentz cube, but only in cubic SC,
FCC and BCC systems. Finally, while the primary emphasis is on the discrete dipole—dipole
interaction, contact is made with the continuum model. For example, in the continuous SC dipole
model, just one monolayer is required to generate the Lorentz cavity field. This is in marked contrast
to the discrete dipole model, where a minimum of five adjacent monolayers is required.

1. Introduction

In recent years there has been growing interest into incorporating thin magnetic films (100 ym-100 nm) into
metamolecules [ 1-4] and magnonic devices [5, 6]. The properties of thin patterned magnetic films are therefore
of importance. In general, such devices rely on exciting ferromagnetic resonance (FMR), which is dependent on
the local dipolar field By, (r) generated at site r by all the other dipoles within the sample (not the macroscopic
field B = p1,(H + M), see the discussion by Kittel [7, 8]). Here, we first review the calculation of the local field,
as laid down by Lorentz [9]” and Brown [10]. Secondly, we adapt the Lorentz method to monolayers and thin
films. Thirdly, an extension of the Lorentz method is used to speed up calculation of local dipolar fields, as a
function of position within a given thin film. Fourthly, we compare local dipolar fields in square, rectangular,
circular, and elliptical shapes, paying particular attention to the local dipolar fields at the edges. In essence, the
work presented here can be seen as an attempt to identify that shape of film (pattern) which should yield the
narrowest FMR linewidth. Such experiments should have relevance in magnetic hybrid split ring resonator
(SRR) metamolecules, where strong photon—magnon coupling occurs [2—4]. In the latter experiments, the
permalloy and other magnetic films were simply patterned into small circular disks of ~100 zzm diameter,
primarily to suppress eddy currents. Little regard was paid as to how to strengthen the FMR /SRR (magnon/
photon) interaction. In this paper, it is argued that the use of long rectangular or elliptical shapes should lead to

> Note. According to Kittel [8] the field due to polarization charges on the inside of a fictitious sphere was fist calculated by Lorentz in 1878.
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Figure 1. 2D schematic diagram showing a Lorentz sphere in a thick film. In reality, the 2D disk (2D rectangle) should be a 3D sphere
(3D sslab), respectively.

sharper FMR resonances, and hence stronger photon—magnon coupling. However, while the above provides
some motivation for the present work, the results presented here, advance the Lorentz concept in basic
magnetism, particularly in monolayers and thin films.

2. Brief review of magnetostatics

Using a uniformly magnetized ferromagnetic slab as an example, the local dipolar field at a target site r; can be
expressed in the form:

Bioc (i) = Bdip(ri) + Bior + Bdemag + Bapp- ()]

A schematic diagram, illustrating the origin of the By, (i), Bror, and Bgemag terms, can be seen in figure 1.
Here:

Lorentz

Sphere i ( 4.T")T"

I © e Ti) T oM

Bdip(ri) ==L Z __; + 3]75 3 Bror = O—; Bdemag = —-D.M, 2
47 ji rii i 3

where the remaining symbols take on their usual meanings. So in addition to the applied field B,j,, the actual
local dipolar field By, (r;) at the target atom consists of three terms. One, a contribution generated by all the
dipoles within the Lorentz sphere: Bg;, (r;). Two, the Lorentz field By, generated by the free poles at the edges of
the spherical hole (often referred to as the Lorentz cavity or remagnetizing field p,M/3). Three, a
demagnetization field Bgemag, generated by uncompensated magnetic poles at the extreme left and right of the
slab. The contribution from all other dipoles, the vast majority, amounts to zero by a fundamental theorem of
electrostatics (see appendix A). This theorem rests on two pillars. One, the magnetization in the sample with the
Lorentz sphere removed, can be considered as continuous, as viewed from the center of the Lorentz sphere. Two,
the divergence of the magnetization divM = 0, i.e. uniform magnetization regardless of shape.

In the following sections, we apply the Lorentz method to thin films and monolayers, where the concept of a
Lorentz sphere is now meaningless.

3. Monolayer magnetostatics

For thin films, the dipole—dipole contribution to the local field By, (1) at a given site can be determined by summing
over all the fields generated by dipoles, within individual monolayers, and subsequently adding all the monolayer
contributions together. This method works in thin films because, in general, only five monolayers are required [11].

Specifically, if all the magnetic moments within a given monolayer are parallel, the local field at the origin
(0,0,0) in a simple cubic (SC) compound can be written in compact matrix form:

2
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1 Dt o0 (/e
Bioc(r) = 4—0—32uk 0 D o ||/l ©)
0 0 —2D5%N\ k. /

Here (i) Ak = 0 refers to that monolayer which contains the target atom r = (0, 0, 0), while Ak = +1, 42
refers to the monolayers above and below the target monolayer, etc, (ii) the dimensionless term D5 is a
shorthand notation for the planewise summations

DAk ZDIJAI( (4)
{i.j}

(iif)

. 2 2
pisk = BE 1) AR, 5)

’
(iv) The {i, j} refer specifically to the positions of the moments {x, y} within a given plane k, (v) Ak = (k — k'),
(vi) the z-axis is normal to the film, in the direction of Ak, (vii) because of cubic symmetry Dy, Ak DAk nd
DAk DAk DAk = 0, (viii) the matrix is traceless, and (ix) all other symbols possess thelr usual meanings.
Also, note that (i) thls method only works, if all the magnetic moments 1, within a given monolayer are parallel
to each other, and (ii) in the Lorentz limit, the dipolar sums ’Dﬁck will give rise to the local field By, (r), as
described by equations (1)—(2).

In [11], it was shown that for a SC square monolayer film with 2m + 1) x (2m + 1) spins (m integer), the
D2k(m) converge asymptotically according to:

DEKm) = app — i (6)
m

In practice, the constants sy are essentially zero for |Ak| > 2. Thus for a SC ferromagnetic thin film, only
three numbers are required:

oy = 4.516 811; aey; = —0.163 7329; arr, = —0.000 278 402. 7)

So for an infinite film, (m — oo):

DaKm = 00) = 4.516 811 — 2 x 0.163 7329 — 2 x 0.000 2784 =~ ar (8)
= 3

Consequently, for an in-plane x-axis magnetization:

Mo pdm, poM
47 a® 3

Bioc(r) = i (=Biop). 9
This is exactly the same cavity or remagnetizing Lorentz field as that found at the center of the Lorentz sphere
(see figure 1).

Finally, before leaving this section, we state that in the main we shall concentrate primarily on the properties
of the dimensionless dipolar terms D2X(m). In practice, such terms can be rapidly converted into dipolar fields
using equations such as equation (9). However, this involves additional prefactors that reduce clarity of
presentation. In addition, we shall also concentrate primarily on the properties of DAkm) with Ak = 0, since it
is this monolayer which contributes the largest contribution to the local dipolar field.

4. The Lorentz method in monolayers

In [11] it was shown that the slowly converging term 2+/2 /m in equation (6) originates from demagnetizing
fields at the edges of the film. This result allows us to adapt the Lorentz method to a square monolayer of spins, as
illustrated schematically in figure 2.

Here, the Lorentz square, defined by (2my,, + 1) X (2myr, + 1) spins, islocated in the center of the square
film (m > my,,). Thus for the target atom at the center of the film:

22 28

Mior m

(10)

DEkm) = DENmper) +

The first term Dka (mor) is the discrete contribution from all the dipoles within the Lorentz square, the second
term 2+/2 /my,, is the monolayer equivalent of the remagnetizing Lorentz field, while the third term is the layer-
equivalent demagnetizing contribution, arising from the free poles on the edges of the m x m square film. All
contributions from other dipoles (the vast majority) amount to zero, as in the Lorentz method (see appendix A).
Equivalently, in terms of magnetic field, for a uniformly magnetized monolayer, magnetized along the x-axis:

3



I0OP Publishing NewJ. Phys. 21 (2019) 073063 G]JBowden etal

Target atom r

ﬂ Lorentz square
-’% (Lifted out)

Figure 2. Schematic representation of the Lorentz method for a square monolayer of spins, showing the uncompensated North and
South poles.

Table 1. (a) The Lorentz method applied to a SC monolayer using Lorentz
squares of differing sizes: Dgx as a function of ;. (b) The Lorentz
method applied to a SC monolayer using Lorentz squares of differing
sizes: Djfxl as a function of ;.

Mior /Dfxo(mLur) 2\/5/"7I,or D?cx(mLor) + 2\/5/7”"Lor

20 4.378 87 0.141 421 4.520 29

50 4.460 80 0.056 5685 451737

100 4.488 67 0.028 2843 4.516 95

250 4,505 52 0.011 3137 4.516 83

500 451116 0.005 657 4516 82

1000 4.513 98 0.002 828 4.516 808

2000 4.515 40 0.001 414 21 4.516 811

3000 4515 87 0.000 943 4516 811

()

20 —0.301 261 0.141 421 —0.159 840

50 —0.219 711 0.056 5685 —0.163 142

100 —0.191 872 0.028 2843 —0.163 588

250 —0.175 023 0.011 3137 —0.163 709

500 —0.169 383 0.005 657 —0.163 726

1000 —0.166 559 0.002 828 —0.163 731

2000 —0.165 146 0.001 414 21 —0.163 732

3000 —0.164 675 0.000 943 —0.163 732
Bioe(r) = ﬂMZ(Dﬁ"(mm) 22 ﬂ)i, (M - %). (an

4T AR MLor m a

However, there is one big difference between the original Lorentz method and that of the monolayer method
presented here. In the original Lorentz model, the sum over all the dipoles enclosed by the Lorentz sphere is zero:
Byip (r;) = 0 for a SClattice. However, this is not the case for the sum over the spins in a SC Lorentz square.
Indeed, this term is the major contributor to the value of Dka(m — 00): a point illustrated in tables 1(a), (b) for
DY, DL, respectively.

Next, we observe that the Lorentz method allows for a fast determination of Dﬁxk (m — 00).From
equation (10), for m — oo, Dka(m — 00) — Dka(mLor) + (2+/2) /1. Thus we should be able to
determine the value of Dka(m — 00), using relatively small values of my,. This trick is illustrated in tables 1(a),
(b). For example, if this method is to work the last column in say table 1(a), should read 4.516 81. For
Mo = 1000, the error is negligible. However, even for iy, as small as 50, the deviation from the saturation
value is only +1.2%. Similar conclusions also hold for Dfxl (see table 1(b)).

In conclusion, it is clear that the Lorentz method can be used to examine and speed up the determination of
the local dipolar fields in a given monolayer, using relatively small values of the Lorentz square (2myo, + 1) X
(2myo; + 1).Itisalso clear that such tables can be used to answer the question: ‘what is the value of my,, required
for a given accuracy?” However, rather surprisingly, we find that quite small values my,, ~ 50 are sufficient.

4
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Figure 3. Schematic diagram showing the Lorentz probe (magenta) inside a monolayer square film. The integers 1, and m, determine
the direction of travel. The actual size of the Lorentz probe on the right is grossly under-exaggerated.

Indeed, this observation allows us to examine the variation of the local dipolar field across a given monolayer or
thin film, as discussed in the next section.

5. Local dipolar field spatial variation in a uniformly magnetized square thin film

So far, we have concentrated on calculating the local dipolar field at the center of say a sphere or thin film. Here,
we show that the Lorentz method can be used to speed up the calculation of the local dipolar-field variations
across a uniformly magnetized thin film.

Instead of fixing the position of the Lorentz square in the center of the film, we now allow the Lorentz square
to travel (metaphorically) in both the x and y directions. This situation is illustrated schematically in figure 3.
Here we can think of the Lorentz square as a Lorentz probe which we move around the film. Next, we use the
surface charge analogy of demagnetization fields, to work out the value of the demagnetizing field at a given
position within the film, arising from the free poles on the edges of the film. Note that a free north (south) pole,
corresponds to a negative (positive) charge, respectively. Thus the demagnetizing field is in the same direction as
the equivalent electric field.

If we set o equal to the charge per unit length the charge dg at y in a small region dy is given by:

dg = ody. (12)

This charge will give rise to an electric field dE at the target atom, located in the center of the Lorentz square

(red)

dE = @(—f). (13)
r
Next, we observe that:
tan 0 o w. (14)
(m — my)a
Thus:
(m — my)a
dy = ———=—dé. (15)
cos?d
Also:
rcosf = (m — my)a. (16)
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Consequently, on combining equations (12)—(16) we find:
odd

dE= ——— 7. 17
(m — my)a (47
Thus the total electric field, arising from the positive charges on the top of the film, is given by:
B o f91 cos@d@:—a[Sin91+ sin 6,]
* (m — my)aJ-6, (m — my)a
0, _
B = ——"— [ sin0d0 = + olcosf — coshy] (18)
(m — my)aJ-o, (m — my)a
Here the angle 0 is swept from 6, to —6,, as indicated by the dotted red lines in figure 3, specifically:
m—m m+ m
0, = tan‘l(—y); 0, = tan‘l(—y). (19)
m — My m — My
Likewise from the negative charges at the bottom of the film:
Eb— _ osin 0] + sin 65]
* (m + my)a
o ’
Eﬁ _ olcos 0, — cos 6] 20)
(m 4 my)a
where:
b =t 2 g — 222, @
m + m, m + m,
So, for example, at the center of the square, m, = m, = 0, yielding 6, = 0, = 9{ = 9’2 = /4 Thus:
E'—FE.+E! = _220, E =0 (22)
ma

inaccord with [11].

Proceeding in this manner, we have calculated DY, (11, m,,) as a function of position within a square film with
m set equal to 5000, i.e. in excess of a 10° spins. To do this we have set the size of the Lorentz square (the probe)
1o = 50. This small value does not yield the most accurate value of D%, (m — oo). However it does allow us to
approach the edge of the film to within Am = —50. The results are detailed in figure 4(a), where it will be observed
that most of the film is characterized by a constant value, close to 4.516, except at the film edges where it falls
sharply. We shall refer to these two sharp falls as the cliff edges at the North and South poles of the film.

Concomitantly, in addition to the changes in the magnitude of DY, transverse fields (y-axis) are also
generated by the demagnetization fields. Their amplitudes, which we shall denote by the cross term D?Cy, are
summarized in figure 4(b). Note that the amplitude of the D?C), is close to zero for most of the film, except at the
corners where it changes quite rapidly.

Finally, thelocal dipolar field, across the sample, can be determined using the matrix formulation:

DAk DAk 0
Lo 1 T s/ i
Bioc(r) = =53 | Dyf Df 0 o | (23)
4T a’ ‘Ax Ak 0
0 0 -2D%

Here it is understood that (i) the D2¥ etc are now position dependent, and (ii) the demagnetization fields are
now all included in the D%k etc terms. However it is also clear from an inspection of figures 4(a), (b) that the
magnitude of the off-diagonal terms, at least for square films, is generally much smaller than their diagonal
counterparts. Another notable features in figure 4(a) is the apparent constancy of D°,_(top and bottom) at the
edges parallel to M. Of course, it must be stressed that both diagrams (figures 4(a), (b)) only detail the magnitude
ofthe DY, and D?c}, to within 50 atoms from the edges of the film. So while these figures detail the variation of the
two terms across the vast majority of the 10® spins in the film, there is the possibility that both D°_and D?Cy may
change even more dramatically as we approach the actual edges of the film. To investigate this situation, in more
detail, we have examined the properties of a smaller film 0of 501 x 501 spins, this time going right up the edge of
the film. The results can be seen in figures 5(a), (b).

From an examination of figure 5(a) it will be seen that the variation of DY, parallel to the magnetization M,
changes dramatically (4.51 — 1) at the North and South pole cliff edges of the film. However, perhaps
surprisingly, D%, perpendicular to the magnetization M, is relatively constant, only changing modestly right at

6
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-5000

Figure 4. (a) Variation of DY, asa function of position within a uniformly magnetized monolayer magnetized along the positive
x-axis. (b) Variation of Dgy as a function of position within a uniformly magnetized monolayer magnetized along the positive x-axis.
This will give rise to small displacements of the spins away from the x-axis magnetization in the £y directions.

the very edge of the film (4.51 — 4.66). These observations therefore, suggest that if we wish to maximize the
number of spins with the same local dipolar field, it is best to choose elongated rectangular films with the long
axis parallel to the magnetization M. In fact, it is possible to put this statement on a semi-quantitative footing, by
calculating the mean value and variance of say D, across the sample. The results can be seen in figures 6(a), (b),
for ever increasing rectangular shapes.

From the k = 0 FMR point of view, the actual situation is, of course, more complicated than that implied by
mean values and standard deviations. In practice, both the North and South pole cliff edges, will almost certainly
lead to pinning at these edges of the film (different FMR frequency). This situation is examined in more detail in
appendix B, where it is argued that (i) if the spin wave mode k = 7 /1 is excited, where [ is the length of the film in
the direction of the magnetization, and (i) the shift in resonance is say 1,/10" of the inhomogeneous linewidth,
then Kittel’s FMR equations are still, essentially, valid. Of course, both the North and South pole cliff-edges can
be avoided entirely, if along rectangular strip is turned into a flattened ring. However, such 3D geometries will
limit applications.

In the next section, we examine the local dipolar field across elliptically shaped monolayer or thin films. In
practice, there are significant differences between rectangular and elliptical thin films.

6. Local dipolar fields in a uniformly magnetized elliptical disk

First, we obtain an expression for the demagnetization factor for a target atom at the geometric center of a
monolayer in the form of an elliptical disk.
The equation of an ellipse takes the form:

2 2
()G o8
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Figure 5. (a) DY, parallel to the magnetization M, as a function of distance from the edge of the film. The dots signify the discrete value
of DY, in the direction of travel. The continuous line is the saturation value at the center of the film. (b) DY, perpendicular to the
magnetization M, as a function of distance from the edge of the film. The dots signify the value DY, in the direction of travel. The
continuous line is the saturation value at the center of the film.
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Figure 6. (a) Mean value of DY, for rectangular films. The saturation value is D%, = 4.516 81. (b) Standard deviation of DY, and Dg},
for rectangular films. The mean value for D?g, is always zero (see figure 4(b)).
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f
b
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b :

Figure 7. The parametric representation of an ellipse. The red circle is used as a construct for the blue ellipse.

Here, we observe the usual convention that the axes (g, b) are associated with the (long, short) axes, respectively,
i.e. theellipticity ¢ = b/a < 1. Unfortunately, this symbolism clashes with our earlier definition of a as the unit
length of the SClattice. So ultimately, it will be necessary to replace the elliptical length a by m,a, where m,, is an
integer.

In practice, it is convenient to use the parametric representation of an ellipse:

X =acos ¢,y =Dbsin ¢, (25)
where ¢ is measured from the long axis of the ellipse, and a = b. The situation is illustrated in figure 7.

First, we need an expression for the charge distribution around the edges of the ellipse. In the parametric
representation, the tangent to the ellipse at a general point (x, ) takes the form:

t=dxi+dyj=—asingpdpi+ bcospdopj. (26)
So anormalized vector 71, normal to the tangent ¢, is given by:
P € COS ¢ 1 sin ¢ j ‘ 7)
\/sinz ¢ + €2cos? ¢ \/sin2 ¢ + e2cos’ g
For the charge distribution as a function of ¢, we are interested in the projection of the normal onto the
direction of magnetization (the a (x)-axis). Thus the charge distribution scales as:
0 € Cos
() = — ¢ (28)
\/smz ¢ + g%cos’ ¢
Notethatife = 1, 0(¢) — o cos ¢, i.e. that for acircle, as expected [11].
Next, from equation (25) we have:
r= a\/cos2 ¢ + e%sin’ . (29)
So aportion ds around the ellipse is given by:
ds = a\/sin2 ¢ + €2 cos? pdo. (30)
Given that the charge on the ellipse scales as g, (¢) ds, we obtain:
dE — U((bz)ds —i cos ¢ —jAesin¢. 31)
r \/cosz ¢ + e%sin’ ¢
Thus:
o € cos? ¢
E,=—— do. 32
a((cosz¢ + £2sin? ¢)3/2 ¢ (32)
On integrating therefore:
2T 2
Eu:_if € cos”¢ = |do, 0 <e <. (33)
aJo

(cos? ¢ + €2sin? )2

In practice, analytic forms can be obtained for the above integrals, if the ellipticity € can be expressed in the
form of a fraction:
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Table 2. The Lorentz method applied to a SClattice using an elliptical monolayer with
€ = 1/2, for various integer m, along the a-axis. Note that the last column rapidly
approaches 4.516 811, i.e. the value of DY, (m, — o0) (see[12, 14]). It will also be
observed that even for m, as small as 50, the error in DY (50) + (3, /50 is very small,
namely +1.1%.

g DY (ma) Ba/ma D(m — 00) = D3 (ma) + Bu/mq
50 4.4669 0.050 4245 4.517 32
100 449173 0.025 2123 4.516 94
250 4.506 74 0.010 0849 4.516 82
500 451177 0.005 042 45 4.516 81
1000 4.514 29 0.002 521 23 4.516 81
2000 4.515 55 0.001 260 61 4.516 81
3000 4.51597 0.000 840 409 4.516 81
€ = E (34)
q
We find:
2 2 2 2 2
oe 4 — —
E,=-L 1 ZK(q zp)—E(#) 0<e<1), (35)
aq —p q q
where K and E are elliptic integrals. Alternatively, in terms of o and [ exponents, we have:
DAk y — oAk _ Da 36
XX (ma) - axx - m_) ( )

a

where the exponent (3, is given by:

p_4q’ @ -p’ @ —p’
6“__5[12;72[1{( prand e Gt | (37)

Similarly, for magnetization along the shorter b-axis:

Dyf(m,) = o — 22, (38)
g
where (3, is given by:
_p 47 @ —p*) 4 (2 -»
By= - ZK[ |- SEl+——|| (39)
a9*—p q p q

Note thatif the eccentricity ¢ = 1, 8, = 8, = 7, 1.e. thatforacircle. Alsoif ¢ — 0,1.e. a > b, then
Ba — 0, whichis to be expected. As the ellipse becomes more and more ‘rod-like’, the charge is now
concentrated at the ends of the rod.

Next, some numerical calculations for an ellipse with ¢ = 1/2, are summarized in table 2. Once again, as
with square monolayers, it is clear that the value of D5¥(m — c0) can be obtained using quite small elliptical
disks. As with square monolayers discussed earlier, small elliptical Lorentz disks can be used to probe the
variation of magnetic fields across larger elliptical monolayers.

Finally, before leaving this section we state that DY, (1m,) and D?,y(ma) terms can be fitted with the
asymptotic formula:

DO (m,) = 4.516 81 — 2.520 75/m,

'D%,(mu) = 451681 — 7.168 31/m,. (40)
The first number aka = afyk = 4.516 81 s, of course, to be expected. The 3, (3;) exponents can be

calculated using equations (37) and (39). We find 2.521 23 (7.167 22), respectively, which compare favorably
with the exponents of equation (40), obtained with a least squares fitting program.

In summary, we have obtained expressions for the local dipolar field at the center of an ellipse. In the
following section, we use our extension of the Lorentz method to examine the local dipolar field at points other
than that at the center of the ellipse.

10
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7. The demagnetizing field at an arbitrary point in a ferromagnetic elliptical monolayer

First, it is necessary to obtain an expression for the demagnetizing field, at an arbitrary point within the disk,
arising from free-poles on edges of a uniformly magnetized elliptical disk.
A general point r on the edge of the elliptical disk is given by:

r:a(cosqbf—i—ssin(bf). (41)
Likewise, a point within the disk can be written:
r, = ay(cos ¢1l¢ + € sin ¢, f), (4 < a). (42)
Thus the electric field at r; due to the surface charge at r is given by:

JE — o(p)ds r—r

=1 i — r?

_ 0 € COos @
\/sinng + g2 cos? ¢

a\/sin2 ¢ + €2 cos’ ¢ d(;Srl;r3 (43)

(Ir — r|2)§
(a cos ¢, — a cos ®)i + e(a sin ¢, — asin gb)f
[(a cos ¢, — acos §)? + €2(aysinp, — asin p)? /2

=aoecosodo

Proceeding in this manner, we find:

2m (a 0 € cos ¢)(a; cos ¢, — a cos @) ~

Ex = Ea = f N . d¢1
0 [(acosgp, — acosp)® + e*(asingp, — asinp)? /> (44)

P fzw (a o 2 cos ¢)(a sin ¢, — a sin ¢) doj

L [(a;cos ¢, — acosp)?® + £2(a;sin ¢, — asinp)? P/? )

Asacheck,weset a; = 0,and € = 1. Thus we are calculating say E, at the center of a circle. We find:
2 N
E,=-2 f (cos ¢)?dp = — 7 (45)
aJo a

as expected [11]. However, in general it will be necessary to integrate equation (44), numerically.

The results of such calculations can be seen in figures 8(a), (b), for D2, and D%,, where x(y) are parallel to the
(a, b)-axes, respectively.

On comparing the results for a square film, figures 4(a), (b), with those for an elliptical film, figures 8(a), (b),
we see that there are similarities and differences. For example, both square and elliptical monolayers show a
marked downturn in DY, the cliff edges, as the uncompensated North and South poles are approached.
However, for ellipses, the cliff edge extends into the sides of the film. This is also true for the D?cy term, where the
spread in magnitude is even more apparent. In summary therefore, even a visual comparison between elliptical
and rectangular films, with similar (#11,, 1) and (m,, m,) values, suggests that the rectangular films will possess
a greater number of spins experiencing the same local dipolar field.

8. Thelocal field in a simple tetragonal system

Next, we examine the simplest tetragonal system, with unit-cell volume a*b and ask the question: ‘Is the local
field equal to the Lorentz cavity field in a tetragonal system?’

If we align the z-axis along the b-axis, previous calculations for D= still hold (z = 0) (only x—y
coordinates are involved). However, there will be differences in the values of D2¥=*!and D2*=*2 To probe this
questionweseth = 1.1 X a,i.e. Az = 1.1aAk. We find:

DEM = —0.0852172; D22 = —0.000 079 918. (46)
Consequently, for a ferromagnet magnetized in-plane along say the x-axis:

~ ~ M ~
Fo L po o opEin g optiny i Ho B0y sern g FoMy e0ga g

T a’ 4m a*b a 4T (47)
= NBLor i (n= 1.14).

Bps =

So thelocal field is some 14% larger than the Lorentz field. This observation is not difficult to understand.
The largest contribution to the local field By, is positive, coming from all the in-plane dipoles (Ak = 0). All
other planes contribute smaller negative contributions, which decrease very rapidly as Ak increases. Thus in the

11
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Figure 8. (a) The variation of DY, as a function of position within a uniformly magnetized elliptical monolayer, magnetized along the
positive x-axis. The ellipticity ¢ = b/a = 0.5. (b) The variation of Dgy as a function of position within a uniformly magnetized

elliptical monolayer, magnetized along the positive x-axis. The ellipticity ¢ = b/a = 0.5.

case of a simple tetragonal system, with the longer b-axis perpendicular to the plane, an increase in local field is to

be expected.
Such observations have consequences for FMR. For a thin infinite tetragonal film uniformly magnetized

along the x-axis we may write:

d
B =y X Ber = =yt X (Bapp + Bex + Bloc)

dt

F 1 10 0 (48)
—_ nBLor
==Y 'u')’ X Bapp o + —|J0 1 0 :U’y .

H, 0 Folo o —2)| k

On making the usual small angle oscillation approximation namely: Iy el and p e < p (=p), wefind:

0 0 0
:uy = =7 Bapp Hy + 77BL0r 3!“’2 (49)
fi, —Hy 0
Alternatively, as in a matrix equation:
iw Bapp + M
Y (Bapp kg ) (u},) —o (50)
—YBapp 1w s

12
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Figure 9. Schematic diagram showing the Lorentz box extracted from a ferromagnetic cube. The free poles on the inside of the Lorentz
box give rise to the Lorentz remagnetizing field of (+-47/3)M at the target atom, whilst the free poles on outside of the cube give rise to
the de-magnetizing field of (—47/3)M.

Equation (50) possesses the uniform-mode solution [6, 7]:

W = 7\/Bapp(Bapp + TlﬂoM)- (51)

In practice, differences between this formula and the normal Kittel solution (with 7 = 1) may be difficult to
spot. Furthermore, tetragonal systems will almost certainly exhibit anisotropy, which again will change the
resonance condition [12]. Also, sometimes very thin layers appear to be characterized by demagnetization
factors of other than —1 perpendicular to the film [12]. Nevertheless, the above discussion highlights the simple
fact that only cubic systems are properly characterized by the Lorentz cavity field of (u,M/3).

9. Lorentz demagnetization factor for a cube

In the bulk of this paper, we have been concerned primarily with the properties of thin films. However, it is of
some interest to examine the situation in three dimensions. As we shall see, in section 10, this also has relevance
to 2D monolayers with continuous magnetization.

First, imagine a ferromagnetic cube uniformly magnetized along say the x-axis. Second, imagine that a
Lorentz box of magnetic moments is cut out and lifted out of the cube (metaphorically speaking), as illustrated
schematically in figure 9 below. We set the dimensions of the Lorentz box equal to (2i + 1)° where i, is an
integer.

We can now make the following familiar statements. One, the contribution of the dipole moments to the
field at the center of the Lorentz box is zero: this is well known. So the field at the center of the Lorentz box is
governed by the Lorentz remagnetizing field, arising from (i) the free poles on the insides of the empty box
(which originally contained the Lorentz box of dipoles), and (ii) the demagnetization field, arising from the free
poles on the outside edges of the overall cube. Once again, the surface charge analogy can be used to calculate the
positive Lorentz remagnetizing field. We find:

13
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Figure 10. The double summation ¥y as a function of x = ipa.
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+i ig (52)
Xy 25,

(( e

Here (i) the integers (i, j, k) are associated with the Cartesian vectors (x, y, z), and (ii) cos a is the direction
cosine of the vector E with respect to the x-axis. The result of this calculation as a function of the size of the
Lorentz cube, can be seen in figure 10. Once again, this data can be fitted with the asymptotic formula:

Yo = 4.188 83 — 2.303 99/, (53)
Thus for large iy, the double summation converges to 47/3, i.e.
20 o 4m

In summary therefore, for both spheres and cubes, the Lorentz remagnetizing factor of 47 /3 is obtained.
Nevertheless, even for iy as small as ~50, the error in the Lorentz remagnetizing field is only ~1.2%. So, in
principle, similar methods to those advanced in sections 5 and 7, can be used to examine demagnetizing fields in
uniformly magnetized 3D samples.

Next, we note that if the surface charge o is spread uniformly over the sides of the cube, as in the continuum
model, the double summation in equation (52) is readily converted into a double integral. We find:

20 o
E, = —220 — —210, (55)
a a

where:

Xo Xo X0 B 1 4
I:2f df dz =8tan! |— = —. 56
0 . Y % (x02 + y2 + 22)3/2 3 3 ( )

This result holds for any value of x,, except zero. Also, if are dealing with a tetragonal system, it will be
necessary to change the range of the integral in the z-direction. We find:

=2 " a ™" 4 %o $tan~! |— (57)
= z = dtan— _—
’ D L (xo®> + y? + 22)%/? 2n? + 1

Once again therefore, the Lorentz cavity factor of 47 /3 is obtained only in cubic systems.

As noted earlier, the field at the center of the Lorentz cube, of any size, is always zero. In terms of
remagnetizing and demagnetizing fields, this result can be readily interpreted in terms of the remagnetizing field
Lorentz +p,M /3, exactly canceling the demagnetizing field — 1, M /3. However, this is not the case if the

14
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Figure 11. Variation of the demagnetizing field factor I, ( f) along the x-direction, for —1 < f< 1.

Lorentz probe is moved away from the center of the ferromagnetic box. Here, the remagnetizing field, associated
with the Lorentz probe stays the same, while the demagnetizing field associated with the distant surface poles/
charges will change. Once again, the latter can be easily calculated using simple integrals, thereby allowing a fast
determination of the variation of the local field across the bulk of say a ferromagnetic cube.

First, we examine the case of moving the Lorentz box across the ferromagnetic cube in the x-direction, with
y = z = 0. Here we set the displacement along the x-axis as fxowhere — 1 < f < 1. We obtain:

_ o o xo(1 = )
Ix(f)——j:xodyjixodz 3
(xo(1 — fN* + y* + 292
B Izo dyjj:) & xo(1 + f) - (58)

(oL 4+ f)? +y> + 292

=4{cot "[(f = D3+ f(f = D] — cot "[(f+ D3+ f(f+ D}

Aplotof I, (f) canbe seen in figure 11.

Atzero displacement along the x-axis (f = 0), the Lorentz demagnetizing factor of L, (f = 0) = —4n/31is
obtained. However, away from the center of the cube the strength of demagnetizing field rapidly increases,
almost doubling as it reaches the faces of the Lorentz box. This result is in marked contrast to the monolayer
results presented earlier in section 5. Clearly, the demagnetizing field associated with cube/rectangular boxes is
highly non-uniform, in marked contrast to the situation encountered in uniformly magnetized spheres,
discussed in the next section.

10. Local dipolar fields inside a uniformly magnetized sphere

Given the highly non-uniform demagnetization fields inside a ferromagnetic cube, it is of some interest to
examine the case of a uniformly magnetized 3D sphere. Here it is well-known that the demagnetizing field is
always — i, M /3, anywhere within the sphere. Thus if we use a smaller 3D sphere, as our Lorentz probe, it is easy
to show that the local dipolar field is zero, atleast up to the edge of the big sphere. Here, the Lorentz
remagnetizing field from the small Lorentz spherical probe exactly cancels the demagnetizing field arising from
the free poles on the edge of the big sphere. Of course, from a discrete point of view differences may be expected.

In figure 12, a discrete local field calculation can be seen for a sphere of radius 200 units. Note that the value
of DY _is shown right up to and beyond the edge of the sphere.

From an examination of figure 12, it is clear that well inside the sphere Dgx is close to zero, in accord with
expectations. However as we approach the inside edge of the sphere, DY, dips down before turning sharply
upwards to a value of DY, = 8.248 right at the edge (n = 200). We conclude therefore that the local dipolar field
is essentially equal to the applied field, except within a range of <10 units of the sphere radius. So despite classical
expectations, the local dipolar field at or near the edge of the sphere is not equal to that at the center.
Consequently, even for a sphere, some pinning of the FMR modes, at the edges, can be anticipated.
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Figure 12. The value of DY, for a traverse along the x-axis for a uniformly magnetized sphere, with a digital radius n = 200. Also
shown for interest are the values outside the sphere.

Finally, we note that for x-axis trajectory taken in figure 12, the local dipolar field is given by:

D0 0 I
1
1 _ LAk
Bioc(x, 0, 0) = 5_725 0 ZDM 0 /1'}/ . (59a)
0 0 Lpae[| w
—Dx .
Similarly, for the y(z)-trajectories:
1
EDka 0 0 Iy
B . Ak
loc(o) Vs 0) == E; 0 Dxx 0 lj’y (59b)
1
0 0 fEDﬁ 11,
1 Ak m
D0 0 x
1
Bloc(or 0, Z) = Z_’](:_E 0 _lpka 0 /’Ly . (59C)
0 0 Dk e
Consequently, for an x-axis direction of magnetization:
1
Bioc (0, )2 0) = B1oc(0, 0, z) = _EBloc(xy 0, 0). (60)

Similar identities can be established for other trajectories.

11. Continuous magnetization model

Itis also of some interest to examine the case of ‘continuous magnetization’, widely used by the magnetic
modeling community. Here we assume that every magnetic dipole is spread out uniformly over its unit-cell (a*),
thereby allowing discrete dipole summations to be replaced by simple integrals. For example, consider a single
monolayer, containing the target atom at the origin, as illustrated schematically in figure 13.

In order to calculate the local field at the origin, we first empty the cubic cell (a*) at the origin, and
subsequently calculate the local field at the origin of the empty cell, generated by all the other dipoles in the
monolayer. For an infinite film, we find:

DY — 4L + L + L), (61)

16



10P Publishing

NewJ. Phys. 21 (2019) 073063 G]JBowden etal

Empty Cell

Figure 13. A section of a single monolayer with continuous magnetization, symbolized by red, with an empty cell at the origin.

where:

e e

(x +y? )

2_fl/zdxf dyﬁ dZ(Zx —y? —z):_%

7 (24 y? +22)2
1/2 1/2 2x? — y? — 72 T
L :f dxf f (2 2)/ 2 532 =3 (62)
1/2 1/2 (x + y° + 29 3

Thus in the continuum model, the Lorentz cavity field factor at the origin is given by:

DY = 4L + L + L) = 4n/3. (63)

Of course, one must also consider other possible contributions from neighboring monolayers. For the
nearest neighbor upper monolayer layer the contribution to the target site takes the form:

Dl — 4+ L+ L+ L. (64)
Note that this time, the integral contains the contribution arising from i = j = 0 term. We find:
0 00 1 2 _ 2 2
Ilzfl dxﬁ dyledz(zx A Ch bR NP
2 2 2 Py D)2
1/2 ) 1 2 2 1 2
Iz:f dxﬁ dyfidz(x y -+t )5) —0.25132
0 2 2 Py 4+ D)2
1 1
o9 ES ES 2 2 2 1 2
IsZﬁ dxfzdyledz(x y—@t )5):0.211716
2 0 2 Py 4+ D)2

1/2 1/2 1 2 _ 2
I = f dxf dyle PG il s 1)5) 0211 716. (65)
0 0 - @+ y*+(z+ DH)2

Thus D, = 0. Thisis also true for the second nearest layer D2, etc. In conclusion therefore the continuous
model predicts that only that monolayer containing the origin contributes to the local dipolar field, and that that
contribution is determined by DY, = 47 /3. This of course, is exactly equal to the Lorentz remagnetizing field
factor, but this time arising from the walls of a single unit cubic cell. In summary, the above constitutes a proof of
the Lorentz method (see appendix) as applied to a thin magnetic monolayer. Here the magnetization is
continuous, divergence free, and the only free surface poles are those on the inside of the single-cell Lorentz box.
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Finally, we note that the predicted FMR frequency of a single monolayer is equal to that of the discrete
model, provided we make the following assumptions. One, we empty out the unit cell, as shown in figure 13.
Two, place a single magnetic point-dipole at the center of the empty cell. Three, calculate the local field at the
single point-dipole arising from all other dipoles in the monolayer, now assumed to be continuous.

12. Conclusions and discussions

In this paper, an extension of the Lorentz method has been discussed which is subsequently used to study the
variation of local dipolar fields across thin films/monolayers, and in some 3D systems. In particular, we have
concentrated on determining demagnetizing fields arising from uncompensated magnetic poles at the edges of
rectangular and elliptical films, using the electrostatic analogy. Initially, it was hoped that a particular shape of
thin film could be identified which offered a constant demagnetization field, inside the sample. In essence, a 2D
equivalent of 3D spheres and ellipses, which both offer a constant demagnetization field inside the sample,
regardless of position. Sadly, no such 2D shape has been found. However, long thin rectangular shapes,
magnetized along the long axis, offer the best compromise, and should therefore be the choice of sample for
FMR applications, and possible incorporation into hybrid magnetic metamolecules.

Finally, some readers may question the usefulness or otherwise of planar monolayer studies. We answer as
follows. Firstly, it has been shown that a minimum of five monolayers is required to generate the expected
Lorentz cavity field in thin films (see section 3 of this paper, and [11]). Secondly, recently, 2D-magnetism has
been observed in a single monolayer of Crl; [13, 14]. Here, magnetocrystalline anisotropy at the Cr sites negates
the famous Mermin—Wagner theorem, which states that no magnetic order can exist in isotropic 1D or 2D
systems [15]. Thirdly, the properties of hyper-thin film dielectrics are of commercial importance [16]. Here, the
Lorentz field factor plays a crucial role in the determination of the local electric field, and hence possible
electrical breakdown. More dielectric applications of the Lorentz method, and the subsequent extension to the
Clausius—Mossiti relationship, can be found in [17, 18].
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Appendix A. The Lorentz method of surface charges

Following Kittel and Lorentz, we use the electrostatic analogy. For convenience, the proof given here is that of
Kittel [8], p 450, but in SI units and with minor corrections.
The electrostatic potential from a dipole with a dipole moment p (p = qa) takes the form

Vr) = — (p—;r)=— : p-grad(l)- (A1)

4mreg\ 1 4Teg r

Next, we adopt the macro-field approach where the dipole moment p is spread uniformly over the unit cell,
giving rise to a macroscopic polarization P. Thus, in the continuum model:

V) = —— f P.grad(l)dv. (A2)
4Teg r
Here, itis understood that (i) the point ris far away from the volume of polarization in question, so that
when viewed from r the polarization looks uniform, and (ii) the integral is taken over the volume of polarized
material.
Next, we use a vector identity to write:

V) = —— f (—ldivp + divg)dV. (A3)

4e, r r

However, if the polarization P is uniform, divP = 0 and so:

Vi) = — [ divEav. (A4)

47eg r

Finally, on invoking the Gauss theorem, the volume integral in equation (4) is transformed into a surface
integral:
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14 = — —dS = ——— | —=dS. A5
*) 47T60f r (&-5)

4mey r
Here g, is an effective charge normal to the surface of the polarized object. Thus the determination of the

potential V (), arising from a host of electric dipoles has been reduced to a calculation of the potential arising

from a surface charge distribution gy,
Finally, rather than the potential V (r), we need the electric field E(r):

E(r) = —grad(V(r)) = + ! grad(fq—NdS). (A.6)
4mey r
The key feature in the Lorentz procedure is that from the viewpoint of r, the polarized object must look like a
continuum with uniform polarization P.

Appendix B. Spin-wave k = 7 /] mode in a permalloy film

Here we use Weber’s spin-wave resonance results on permalloy [19] (see also Kittel [8], p 600) to obtain
estimates for (i) homogeneous broadening of the FMR linewidth, and (ii) the spin-wave stiffness constant D.

First, we assert that ‘damping’, as inscribed in the Landau-Lifshitz—Gilbert equation of motion, leads to
‘homogeneous broadening’ of the FMR resonance. We maintain that this sets an ultimate limit on the FMR
linewidth. From Weber’s results on a 500 nm thick permalloy film, we find:

ABtiomo &~ 9 X 1072 (T). (B.1)

Secondly, from Weber’s observation of the well separated n = 7-17 (n odd) spin-wave modes, in the
thickness t of the permalloy film, it is possible to obtain a value for the spin-wave stiffness constant D. Explicitly:

D(r)?
w =7 (Bapp — poM) + Dk? = Y (Bapp — poM + ABpn?) ABp = 7(7) . (B.2)

We find:
ABy, = 8.2445 x 10~4(T); p1yM = 1.053 (T). (B.3)

Thirdly, if the spins in the ‘so-called’ uniform mode k = 0 are pinned at the North/South pole cliff-edges,
there will be an additional energy shift associated with the presence of the k = 7 /I spin-wave, in the plane of the
rectangular strip. This situation is illustrated schematically, in figure B1. However if the field shift due to the spin
wave is say ten times less than the homogeneous linewidth AByom,, Kittel’s k = 0 FMR formula will still be
acceptable. After some minor manipulation, we find that the length of such a film should be I > 500 nm, in the
direction of magnetization.

Finally, we make two more remarks. One, in the above discussion, it has been assumed that the ‘pinning’ is
uniform at the North and South pole cliff edges. However, the situation in the corners of the film may lead to
extra complexity (see figure 4(b) and [20] for more exotic FMR modes, on smaller platelets, pumped and probed
by optical techniques). Two, the Lorentz method must fail, in principle, in the presence of a spin-wave. Here the
divergence of the magnetization div(M) is no longer zero (see appendix A). For small amplitudes of oscillation,
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Figure B1. A monolayer of spins precessing in the presence of an applied field. All the spins are precessing in-phase. However, the
amplitude of their individual precessions is now x-dependent, given that the spins are pinned at the North and South pole cliff-edges.
The wavelength of the spin-wave is 2l where [ is the length of film in the x-direction of magnetization.
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this failure in principle is probably oflittle relevance. However for larger turn angles, of say of up to 90°, it would
constitute a serious issue.
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