13 research outputs found

    Sterol 14Ξ±-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana

    Get PDF
    Amphotericin B has emerged as the therapy of choice for use against the leishmaniases. Administration of the drug in its liposomal formulation as a single injection is being promoted in a campaign to bring the leishmaniases under control. Understanding the risks and mechanisms of resistance is therefore of great importance. Here we select amphotericin B-resistant Leishmania mexicana parasites with relative ease. Metabolomic analysis demonstrated that ergosterol, the sterol known to bind the drug, is prevalent in wild-type cells, but diminished in the resistant line, where alternative sterols become prevalent. This indicates that the resistance phenotype is related to loss of drug binding. Comparing sequences of the parasites’ genomes revealed a plethora of single nucleotide polymorphisms that distinguish wild-type and resistant cells, but only one of these was found to be homozygous and associated with a gene encoding an enzyme in the sterol biosynthetic pathway, sterol 14Ξ±-demethylase (CYP51). The mutation, N176I, is found outside of the enzyme’s active site, consistent with the fact that the resistant line continues to produce the enzyme’s product. Expression of wild-type sterol 14Ξ±-demethylase in the resistant cells caused reversion to drug sensitivity and a restoration of ergosterol synthesis, showing that the mutation is indeed responsible for resistance. The amphotericin B resistant parasites become hypersensitive to pentamidine and also agents that induce oxidative stress. This work reveals the power of combining polyomics approaches, to discover the mechanism underlying drug resistance as well as offering novel insights into the selection of resistance to amphotericin B itself

    Distinct Effects of IL-18 on the Engraftment and Function of Human Effector CD8+ T Cells and Regulatory T Cells

    Get PDF
    IL-18 has pleotropic effects on the activation of T cells during antigen presentation. We investigated the effects of human IL-18 on the engraftment and function of human T cell subsets in xenograft mouse models. IL-18 enhanced the engraftment of human CD8+ effector T cells and promoted the development of xenogeneic graft versus host disease (GVHD). In marked contrast, IL-18 had reciprocal effects on the engraftment of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in the xenografted mice. Adoptive transfer experiments indicated that IL-18 prevented the suppressive effects of Tregs on the development of xenogeneic GVHD. The IL-18 results were robust as they were observed in two different mouse strains. In addition, the effects of IL-18 were systemic as IL-18 promoted engraftment and persistence of human effector T cells and decreased Tregs in peripheral blood, peritoneal cavity, spleen and liver. In vitro experiments indicated that the expression of the IL-18RΞ± was induced on both CD4 and CD8 effector T cells and Tregs, and that the duration of expression was less sustained on Tregs. These preclinical data suggest that human IL-18 may have use as an adjuvant for immune reconstitution after cytotoxic therapies, and to augment adoptive immunotherapy, donor leukocyte infusions, and vaccine strategies

    Divergent routes to oral cancer

    No full text

    Genetic Loss of Murine Pyrin, the Familial Mediterranean Fever Protein, Increases Interleukin-1Ξ² Levels

    Get PDF
    Familial Mediterranean Fever (FMF) is an inherited autoinflammatory disorder characterized by unprovoked episodes of fever and inflammation. The associated gene, MEFV (Mediterranean Fever), is expressed primarily by cells of myeloid lineage and encodes the protein pyrin/TRIM20/Marenostrin. The mechanism by which mutations in pyrin alter protein function to cause episodic inflammation is controversial. To address this question, we have generated a mouse line lacking the Mefv gene by removing a 21 kb fragment containing the entire Mefv locus. While the development of immune cell populations appears normal in these animals, we show enhanced interleukin (IL) 1Ξ² release by Mefv (βˆ’/βˆ’) macrophages in response to a spectrum of inflammatory stimuli, including stimuli dependent on IL-1Ξ² processing by the NLRP1b, NLRP3 and NLRC4 inflammasomes. Caspase-1 activity, however, did not change under identical conditions. These results are consistent with a model in which pyrin acts to limit the release of IL-1Ξ² generated by activation and assembly of inflammasomes in response to subclinical immune challenges
    corecore