878 research outputs found

    Two Remarks on the Wave-Theory of Mechanics

    Full text link

    Vibrational origin of the fast relaxation processes in molecular glass-formers

    Get PDF
    We study the interaction of the relaxation processes with the density fluctuations by molecular dynamics simulation of a flexible molecule model for o-terphenyl (oTP) in the liquid and supercooled phases. We find evidence, besides the structural relaxation, of a secondary vibrational relaxation whose characteristic time, few ps, is slightly temperature dependent. This i) confirms the result by Monaco et al. [Phys. Rev, E 62, 7595 (2000)] of the vibrational nature of the fast relaxation observed in Brillouin Light Scattering (BLS) experiments in oTP; and ii) poses a caveat on the interpretation of the BLS spectra of molecular systems in terms of a purely center of mass dynamics.Comment: RevTeX, 5 pages, 4 eps figure

    Philanthropy or solidarity? Ethical dilemmas about humanitarianism in crisis afflicted Greece

    Get PDF
    That philanthropy perpetuates the conditions that cause inequality is an old argument shared by thinkers such as Karl Marx, Oscar Wilde and Slavoj Zizek. I recorded the same argument in conversations regarding a growing humanitarian concern in austerity-ridden Greece. At the local level a number of solidarity initiatives provide the most impoverished families with humanitarian help. Some citizens participate in such initiatives wholeheartedly, while some other citizens criticize solidarity movements drawing primarily from Marxist-inspired arguments, such as, for example, that humanitarianism rationalises state inaction. The local narratives presented in this article bring forward two parallel possibilities engendered by the humanitarian face of social solidarity: first, its empowering potential (where solidarity initiatives enhance local social awareness), and second, the de-politicisation of the crisis and the experience of suffering (a liability that stems from the effectiveness of humanitarianism in ameliorating only temporarily the superficial consequences of the crisis). These two overlapping possibilities can help us problematise the contextual specificity and strategic employment of humanitarian solidarity in times of austerity

    Dipole Interactions and Electrical Polarity in Nanosystems -- the Clausius-Mossotti and Related Models

    Full text link
    Point polarizable molecules at fixed spatial positions have solvable electrostatic properties in classical approximation, the most familiar being the Clausius-Mossotti (CM) formula. This paper generalizes the model and imagines various applications to nanosystems. The behavior is worked out for a sequence of octahedral fragments of simple cubic crystals, and the crossover to the bulk CM law is found. Some relations to fixed moment systems are discussed and exploited. The one-dimensional dipole stack is introduced as an important model system. The energy of interaction of parallel stacks is worked out, and clarifies the diverse behavior found in different crystal structures. It also suggests patterns of self-organization which polar molecules in solution might adopt. A sum rule on the stack interaction is found and tested. Stability of polarized states under thermal fluctuations is discussed, using the one-dimensional domain wall as an example. Possible structures for polar hard ellipsoids are considered. An idea is formulated for enhancing polarity of nanosystems by intentionally adding metallic coatings.Comment: 18 pages (includes 6 embedded figures and 3 tables). New references, and other small improvements. Scheduled for publication by J. Chem. Phys., Jan. 200

    Metallic Xenon, Molecular Condensates, and Superconductivity

    Full text link
    A possibility of explaining the light absorption observed to occur under pressure-induced xenon metallization as due to the transition to the superconducting state is analyzed. The mechanism of the van der Waals bonding is discussed.Comment: LaTeX 2.09 (RevTeX), 4 pages, 4 PostScript figures included in tex

    An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    Get PDF
    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat-2 mission. A result relevant for instrument design is that even the two weaker beam classes considered can be expected to yield useful results for vegetation measurements (93.01-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp9) and 72.85% - 98.68% for 0.48 msp (msp4)). Resampling options affect results more than noise levels. The algorithm derived here is generally applicable for analysis of micropulse lidar altimeter data collected over forested areas as well as other surfaces, including land ice, sea ice and land surfaces

    Statistical-mechanical theory of ultrasonic absorption in molecular liquids

    Full text link
    We present results of theoretical description of ultrasonic phenomena in molecular liquids. In particular, we are interested in the development of microscopical, i.e., statistical-mechanical framework capable to explain the long living puzzle of the excess ultrasonic absorption in liquids. Typically, ultrasonic wave in a liquid can be generated by applying the periodically alternating external pressure with the angular frequency that corresponds to the ultrasound. If the perturbation introduced by such process is weak - its statistical-mechanical treatment can be done with the use of the linear response theory. We treat the liquid as a system of interacting sites, so that all the response/aftereffect functions as well as the energy dissipation and generalized (wave-vector and frequency dependent) ultrasonic absorption coefficient are obtained in terms of familiar site-site static and time correlation functions such as static structure factors or intermediate scattering functions. To express the site-site intermediate scattering functions we refer to the site-site memory equations in the mode-coupling approximation for the first-order memory kernels, while equilibrium properties such as site-site static structure factors, direct and total correlation functions are deduced from the integral equation theory of molecular liquids known as RISM or one of its generalizations. All the formalism is phrased in a general manner, hence the obtained results are expected to work for arbitrary type of molecular liquid including simple, ionic, polar, and non-polar liquids.Comment: 14 pages, 1 eps-figure, RevTeX4-forma

    The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography

    Get PDF
    This is the published version. Copyright 2014 Herzfeld et al.Dynamic ice-sheet models are used to assess the contribution of mass loss from the Greenland ice sheet to sea-level rise. Mass transfer from ice sheet to ocean is in a large part through outlet glaciers. Bed topography plays an important role in ice dynamics, since the acceleration from the slow-moving inland ice to an ice stream is in many cases caused by the existence of a subglacial trough or trough system. Problems are that most subglacial troughs are features of a scale not resolved in most ice-sheet models and that radar measurements of subglacial topography do not always reach the bottoms of narrow troughs. The trough-system algorithm introduced here employs mathematical morphology and algebraic topology to correctly represent subscale features in a topographic generalization, so the effects of troughs on ice flow are retained in ice-dynamic models. The algorithm is applied to derive a spatial elevation model of Greenland subglacial topography, integrating recently collected radar measurements (CReSIS data) of the Jakobshavn Isbræ, Helheim, Kangerdlussuaq and Petermann glacier regions. The resultant JakHelKanPet digital elevation model has been applied in dynamic ice-sheet modeling and sea-level-rise assessment

    High Pressure Insulator-Metal Transition in Molecular Fluid Oxygen

    Full text link
    We report the first experimental evidence for a metallic phase in fluid molecular oxygen. Our electrical conductivity measurements of fluid oxygen under dynamic quasi-isentropic compression show that a non-metal/metal transition occurs at 3.4 fold compression, 4500 K and 1.2 Mbar. We discuss the main features of the electrical conductivity dependence on density and temperature and give an interpretation of the nature of the electrical transport mechanisms in fluid oxygen at these extreme conditions.Comment: RevTeX, 4 figure
    corecore