94 research outputs found

    Reconstitution of Listeria motility: implications for the mechanism of force transduction

    Get PDF
    AbstractListeria monocytogenes and some other infectious bacteria polymerize their host cell’s actin into tails that propel the bacteria through the cytoplasm. Here we show that reconstitution of this behavior in simpler media resolves two aspects of the mechanism of force transduction. First, since dilute reconstitution media have no cytoskeleton, we consider what keeps the tail from being pushed backward rather than the bacterium being propelled forward. The dependence of the partitioning of motion on the friction coefficient of the tail is derived. Consistent with experiments, we find that the resistance of the tail to motion is sensitive to its length. That even small tails are stationary in intact cells is attributed to anchoring to the cytoskeleton. Second, the comparatively low viscosity of some reconstitution media magnifies the effects of diffusion, such that a large gap will develop between the bacterium and its tail if they are unattached. At the viscosities of diluted platelet extracts, steady-state gaps of several bacterium lengths are predicted. Since such gaps are not observed, we conclude that Listeria must be attached to their tails. We consider what purposes such attachments might serve under physiological conditions. The implications for related pathogens and amoeboid locomotion are also discussed

    Deterministic schedules for robust and reproducible non-uniform sampling in multidimensional NMR

    Get PDF
    We show that a simple, general, and easily reproducible method for generating non-uniform sampling (NUS) schedules preserves the benefits of random sampling, including inherently reduced sampling artifacts, while removing the pitfalls associated with choosing an arbitrary seed. Sampling schedules are generated from a discrete cumulative distribution function (CDF) that closely fits the continuous CDF of the desired probability density function. We compare random and deterministic sampling using a Gaussian probability density function applied to 2D HSQC spectra. Data are processed using the previously published method of Spectroscopy by Integration of Frequency and Time domain data (SIFT). NUS spectra from deterministic sampling schedules were found to be at least as good as those from random schedules at the SIFT critical sampling density, and significantly better at half that sampling density. The method can be applied to any probability density function and generalized to greater than two dimensions.National Institutes of Health (U.S.) (Grant EB001035)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB001960)National Institutes of Health (U.S.) (Grant EB002026

    Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy

    Get PDF
    Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP [superscript 15]N–[superscript 13]C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR [superscript 15]N– [superscript 13]C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (Grant EB-001960)National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (Grant EB-002926)National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (Grant EB-001035

    Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Get PDF
    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new “redox” approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-[superscript 13]C] acetate does not label α carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-[superscript 13]C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA–CO coupling in the backbone should improve the resolution of NCACX spectra.National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (Grant EB-001035)National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (Grant EB-001960)National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (Grant EB-002026

    A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization

    Get PDF
    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE[subscript 5,2,q] mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.National Institutes of Health (U.S.) (Grant EB002804)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026)National Institutes of Health (U.S.) (Grant EB001960)National Institutes of Health (U.S.) (Grant EB001035)National Institutes of Health (U.S.) (Grant EB001965)National Institutes of Health (U.S.) (Grant EB004866)National Science Foundation (U.S.). Graduate Research Fellowshi

    Structural decomposition of the chemical shielding tensor: Contributions to the asymmetry, anisotropy, and orientation

    Get PDF
    The nine elements of chemical shielding tensors contain important information about local structure, but the extraction of that information is difficult. Here we explore a semiempirical method that has the potential for providing relatively accessible structural correlations. The approach entails approximating the field-induced electron current density as entirely perpendicular to the applied field. This has two interesting consequences. Í‘1Í’ The resulting shielding tensor is perfectly symmetric. Thus, asymmetry in a shielding tensor is an indication of current density that is not orthogonal to the applied field. Í‘2Í’ The orientation dependence of the chemical shielding at a point of interest is related explicitly to the isotropic average of the chemical shielding at every point in the surrounding region. This suggests a relatively simple relationship between the orientation dependence of the chemical shielding and the molecular structure. Good correlation with experimental tensors is obtained with just one or two adjustable parameters in several series of compounds, including silicates, phosphates, hydrogen bonds, carboxyls, and amides. As expected, the results indicate that for a given center, the contribution to the shielding anisotropy that is associated with each bonded neighbor increases as the number of electrons at either the center or the neighbors increases

    DNP Enhanced Frequency-Selective TEDOR Experiments in Bacteriorhodopsin

    Get PDF
    We describe a new approach to multiple [superscript 13]C–[superscript 15]N distance measurements in uniformly labeled solids, frequency-selective (FS) TEDOR. The method shares features with FS-REDOR and ZF- and BASE-TEDOR, which also provide quantitative [superscript 15]N–[superscript 13]C spectral assignments and distance measurements in U-[[superscript 13]C,[superscript 15]N] samples. To demonstrate the validity of the FS-TEDOR sequence, we measured distances in [U-[superscript 13]C,15N]-asparagine which are in good agreement with other methods. In addition, we integrate high frequency dynamic nuclear polarization (DNP) into the experimental protocol and use FS-TEDOR to record a resolved correlation spectrum of the Arg-[superscript 13]Cγ–[superscript 15]Nε region in [U-[superscript 13]C,15N]-bacteriorhodopsin. We resolve six of the seven cross-peaks expected based on the primary sequence of this membrane protein.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-002804)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-001035)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant Number EB-002026

    Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

    Get PDF
    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a [superscript 13]C-Urea sample using this gyrotron.National Institutes of Health (U.S.) (Grant EB002804)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026)National Institutes of Health (U.S.) (Grant EB001960)National Institutes of Health (U.S.) (Grant EB001035)National Institutes of Health (U.S.) (Grant EB001965)National Institutes of Health (U.S.) (Grant EB004866

    Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    Get PDF
    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here—which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole—circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002804)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001960)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001035)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002026)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-003151)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Resolution and Polarization Distribution in Cryogenic DNP/MAS Experiments

    Get PDF
    This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz [superscript 1]H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between [superscript 1]H–[superscript 1]H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.National Institutes of Health (U.S.) (Grant EB002804)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026)National Institutes of Health (U.S.) (Grant EB001965)National Institutes of Health (U.S.) (Grant EB004866)National Science Foundation (U.S.). Graduate Research Fellowship Progra
    • …
    corecore