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Abstract
We show that a simple, general, and easily reproducible method for generating nonuniform
sampling (NUS) schedules preserves the benefits of random sampling, including inherently
reduced sampling artifacts, while removing the pitfalls associated with choosing an arbitrary seed.
Sampling schedules are generated from a discrete cumulative distribution function (CDF) that
closely fits the continuous CDF of the desired probability density function. We compare random
and deterministic sampling using a Gaussian probability density function applied to 2D HSQC
spectra. Data are processed using the previously published method of Spectroscopy by Integration
of Frequency and Time domain data (SIFT). NUS spectra from deterministic sampling schedules
were found to be at least as good as those from random schedules at the SIFT critical sampling
density, and significantly better at half that sampling density. The method can be applied to any
probability density function and generalized to greater than two dimensions.
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Introduction
Non-uniform sampling (NUS) is a powerful method for significantly reducing NMR data
acquisition times and improving spectral resolution. This is especially true at stronger
magnetic fields where simultaneously realizing the benefits of high resolution and desired
bandwidth requires more extensive sampling. NUS has been successfully applied to a
number of solution NMR problems that require high dimensionality and resolution,
including assigning the signals and determining the structures of large soluble proteins [1]
and solubilized membrane proteins [2], studying highly degenerate systems [3; 4],
measuring residual dipolar couplings [5], characterizing metabolic mixtures from cellular
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extracts [6], and studying transient systems, including proteins within whole cells [7].
Furthermore, NUS is spreading to solid state NMR where it has already proven useful for
assignments in multidimensional experiments [8], unambiguous restraints in structure
determination [9], multiple quantum magic angle spinning experiments on quadrupolar
nuclei [10], and PISEMA experiments [11].

A problem with NUS is that it introduces a great deal of variability into experimental
protocols, both with respect to sampling schedules and data processing algorithms. The
simplest processing of NUS data is the discrete Fourier transform. Improved results can be
obtained using maximum entropy and other model-dependent methods[10; 12; 13; 14; 15;
16; 17; 18; 19; 20; 21; 22; 23]. However, the price is variability due to modeling
assumptions. Recently, it has been shown that modeling can be avoided by using knowledge
of zeroes in the frequency domain to replace information missing in the time domain [24].
This process of Spectroscopy by Integration of Frequency and Time domain information
(SIFT) is rapid and can be pursued with various, but well-defined, degrees of aggressiveness
(in identifying frequency zeroes and in the ratio of time points dropped to frequency zeroes
identified).

The situation is more complex with respect to sampling schedules. The idea has always been
to sample more heavily at early times when the signal is strongest and only as much at long
times as is necessary to resolve signals of interest. Early NUS used exponential sampling
distributions, roughly paralleling the decay in the signal intensity[25].However, it has
recently been shown that Gaussian sampling provides better results[26]; apparently, the
greater emphasis on sampling at early times need not entail undue sacrifice of sampling at
late times.

Generating deterministic, and therefore easily reproducible, sampling schedules is
straightforward, whether according to an exponential distribution[25] or any other
distribution (see below). However, random sampling has become popular since it has been
shown to decrease artifacts that arise from sampling below the Nyquist density [26; 27] and
minimize spectral aliasing. The difficulty is that random sampling creates two further
problems: choosing a seed number and reproducibility. As Hyberts et al. have recently
demonstrated in great detail [28], the choice of seed number used to generate a random
schedule can yield widely varying spectral quality. To ascertain the quality of spectra
obtained with random sampling, one would need to collect spectra with many different
seeds, defeating the time-saving benefits of NUS. Second, while it is difficult to define
exactly what criteria should be used to judge the “best” schedule, a goal we do not attempt
to pursue here, it is generally desirable that experimental results be reproducible. In principle
this is not achievable with random sampling unless all the sampled points are specified for
each spectrum (or the specific random number generator algorithm and precise seed are
supplied). Thus, the benefits of random sampling must be weighed against the potential
pitfalls of selecting a bad seed and the desire for straightforwardly reproducible results.

Here we show that a deterministic approach can preserve the benefits of random sampling
(i.e., inherently reduced spectral artifacts) while avoiding the need for an arbitrary seed, and
the attendant possibility of generating a poor sampling schedule. The method is a simple and
entirely reproducible alternative to stochastic sampling. We compare the two approaches in
the context of 2D HSQC experiments on the β1 domain of immunoglobulin binding protein
G (GB1). Importantly, our approach is entirely reproducible and can be generalized to
experiments beyond two dimensions and to sampling distributions other than Gaussian.
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Methods
Sample Preparation and NMR Spectroscopy

U-15N labeled GB1 (mutant T2Q) was prepared as described previously [24]. The solution
HSQC data were recorded at 278 K with a gradient-enhanced scheme [29] at 591 MHz (1H
Larmor frequency) using a custom-built console and software and a Z-SPEC 5 mm triple-
resonance IDTG590-5 probe (NALORAC Co., CA). Four scans were averaged at a recycle
delay of 2 s. The 15N bandwidth of 67 ppm (3984 Hz) was uniformly sampled with 128
points, and the 1H bandwidth of 13.6 ppm (8013 Hz) was uniformly sampled with 1024
complex points. The total acquisition time was 34 min. The maximum evolution time in the
full data set was 32 ms. The master spectrum corresponding to the full data set is shown in
Figure 1.

Generation of Random NUS Schedules
Random on-grid NUS schedules were generated with a Gaussian probability distribution,
exp(−t2/2σ2), by first generating corresponding off-grid optimized Gaussian sampling using
the “timetab_gen” program available from the Warsaw NMR group:
http://nmr700.chem.uw.edu.pl/. To conform to a grid, the evolution time of each point was
increased just enough to coincide with the first unoccupied grid point.

Generation of Deterministic NUS Schedules
A unique sampling schedule is generated from the cumulative distribution function (CDF) of
a given desired probability density function (PDF). The CDF is the integral of the PDF and
can always be determined, if necessary by numerical methods. A sampling schedule which
closely approximates the desired CDF will automatically closely approximate the desired
PDF. Here we provide details of the scheduling algorithm for the Gaussian PDF

where t ranges from −∞ to +∞. The corresponding cumulative distribution function for
positive t is

where erf is the error function. We map the uniform sampling grid to the time domain region
between 0.0 and 1.0 using t = IGRID/NGRID, where NGRID is the total number of grid points
and IGRID ranges between 1 and NGRID. This conventional mapping is completely general
given the freedom to choose σ. The CDF is scaled to obtain NSCHED acquisition points

and discretized by rounding the value off to the nearest integer. This discretized CDF is
calculated for each grid point and those grid points corresponding to the step increases in
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value are chosen as the points to be experimentally acquired. In order to facilitate later NMR
processing, we move the first scheduled point to the first grid point, in the rare case that it is
not already selected. This algorithm can be used with only trivial modifications for any
probability distribution other than Gaussian.

SIFT
SIFT, uses knowledge of zeros in the frequency domain to fill gaps in the time series
without affecting the acquired points [24]. Here we use the most conservative form of SIFT
which refrains from identifying dark regions between signals by either precedent or
thresholding. Rather, dark regions are included at the fringes of the spectrum by expanding
the bandwidth. This increased bandwidth decreases the dwell times proportionately.
However, as shown in the original work, the freedom to sample non-uniformly nevertheless
improves S/N. Furthermore, the results only degrade slowly when sampling is reduced
beyond a simple 1:1 trade-off of time points for frequency points.

The SIFT cycle has been implemented in MATLAB
(http://people.brandeis.edu/~herzfeld/SIFT), calling for input files that contain (1) the
sampling schedule, (2) the corresponding time domain NUS data, and (3) specification of
the dark frequency points. In the present application, signals occur only between 132 and
101 ppm in the 15N dimension (see Figure 1). All areas outside this range were defined as
dark and amount to half of the frequency points. Therefore, for SIFT in this experiment,
50% NUS is critical and 25% NUS is subcritical.

Data Processing
All time domain data (SIFTed or not) were processed in MATLAB by applying a cosine-
squared function in t1 that reached zero at the maximum evolution time, and zero filling to
4096 points in the direct dimension and 512 points in the indirect dimension. Spectra were
then exported to Sparky for viewing and plotting[30]. Contour levels were set to 10% of the
highest peak intensity in each spectrum. SIFTed data were processed by first applying SIFT.
The resulting time domain data were then processed as described above.

Results
To evaluate the deterministic approach we compared results for Gaussian NUS with a
random schedule and our deterministic schedule. The initial comparison used 64 t1 points
(50% of full uniform sampling density) and σ = 0.5. As shown in Figure 2, the results are
similar for the two schedules at this level of sampling. With SIFT processing, both faithfully
reproduce the original HSQC spectrum.

Often more aggressive NUS is desired. But the sparser the sampling, the more room for
mischief there is in random sampling. Figure 3 shows the results of Gaussian NUS with σ =
0.5 at the 25% level (i.e., with only 32 t1 points). While the results are degraded for both the
random and the deterministic sampling schedules, the effect is milder for the latter. Looking
at the unSIFTed spectra at the top of the figure, we see that the deterministic schedule is
significantly less noisy in the bright region (i.e., the area of interest between 132 and 101
ppm in the 15N dimension and 10.9 and 6.1 ppm in the 1H dimension). Since SIFT works by
imposing zeroes in the known dark regions of the spectra, pushing noise outside of the
bright region and into the dark regions produces a less noisy SIFTed spectrum.
Deterministic sampling is presumably accomplishing this by avoiding large gaps between
consecutive points.

On the other hand, the deterministically sampled spectra show some aliasing in the nitrogen
dimension. This indicates excessive uniformity in the gaps between points, which
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corresponds to a probability distribution that is too flat for such a small number of points.
Figure 4 shows that choosing the 32 points with a tighter Gaussian (σ = 0.3, comparable to
the fraction of grid points sampled) provides cleaner results, not only for deterministic
sampling, but also for random sampling. The improved quality is at least partially due to
increased sampling at earlier time points. At the same time, the line widths remain good in
spite of reduced sampling at long evolution times. Overall, the deterministic sampling
schedule generates fewer artifacts than the random schedule; it has less noise in the bright
region and somewhat better post-SIFT results.

It should be noted that the comparisons made here all used random sampling based on the
single seed embedded in the “timetab_gen” program (see Methods). Of course, there may be
better seeds than the one provided by this utility. But the good seeds are likely to vary from
experiment to experiment (e.g., depending on the chosen level of sampling and value of σ)
and finding them would involve more effort than full sampling to begin with, thereby totally
defeating the benefits of NUS.

Discussion
Problems with random sampling have been previously reported, as noted above. Methods to
overcome these problems have also been proposed, including jittered sampling [31], random
sampling with constraints [32], and Poisson disc sampling [32]. These methods aim to
minimize the clustering of samples in the NUS schedule, providing smoother sampling
while maintaining the benefits of randomization. Our method produces the same sought after
effects with a more straightforward and reproducible approach that does not require
calculation of additional sampling parameters and appears to give results that are at least as
good as a typical random method. Spectra recorded via Poisson disc sampling or random
sampling with constraints have been reported to show an inhomogeneous distribution of
sampling noise, with less noise observed near real peaks [32]. As we observe a similar effect
with our deterministic approach, it seems that we have achieved similar favorable noise
characteristics in a simpler fashion. Moreover, since SIFT fills in the FID by applying
known frequency zeros in the dark regions, this type of noise shaping is especially suited to
SIFT processing.

Conclusions
Deterministic NUS, using a CDF corresponding closely to the targeted probability
distribution, appears to provide a reliable and effective alternative to random NUS.
Smoothing the sampling function (i.e., avoiding unnecessarily large gaps between time
points) produces less noise in bright areas, thereby leading to better results, especially with
SIFT processing. Aliasing is easily avoided at lower sampling levels by choosing steeper
probability distributions.
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Figure 1.
HSQC spectrum of GB1 acquired with full uniform sampling of 128 t1 points.
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Figure 2.
Critical HSQC spectra of GB1 from 64 Gaussian distributed t1 points with sigma = 0.5: (a)
the random sampling schedule, (b) the deterministic sampling schedule, (c) the spectrum
resulting from the random schedule without SIFT processing, (d) the spectrum resulting
from the random schedule with SIFT processing, (e) the spectrum resulting from the
deterministic schedule without SIFT processing, (f) the spectrum resulting from the
deterministic schedule with SIFT processing.
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Figure 3.
Subcritical HSQC spectra of GB1 from 32 Gaussian distributed t1 points with σ = 0.5: (a–e)
as in Figure 2.
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Figure 4.
As in Figure 3, but with σ = 0.3.
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