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Abstract
Resonance assignment is the first step in NMR structure determination. For magic angle spinning
NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX,
NCOCX, CONCa) that utilize SPECIFIC-CP 15N-13C transfers. However, the SPECIFIC-CP
transfer efficiency is often compromised by molecular dynamics and probe performance. Here we
show that one-bond ZF-TEDOR 15N-13C transfers provide simultaneous NCO and NCa transfers
with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore,
a 3D TEDOR-CC experiment provides heteronuclear sidechains correlations and robustness with
respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer
efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model
microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.
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Introduction
Magic angle spinning nuclear magnetic resonance (MAS NMR) is a burgeoning approach to
characterizing the structure and dynamics of such otherwise intractable systems as
membrane proteins (Andreas et al. 2012; Andreas et al. 2010; Higman et al. 2009; Eddy et
al. 2012a; Ader et al. 2010; Bhate et al. 2010; Higman et al. 2011; Li et al. 2008; Renault et
al. 2011; Varga et al. 2007), and amyloid fibrils (Bateman et al. 2011; Bayro et al. 2012;
Bayro et al. 2011; Bayro et al. 2010; Debelouchina et al. 2010a, b; Hu et al. 2011; Jaroniec
et al. 2002a; Kryndushkin et al. 2011; Comellas et al. 2012; Lemkau et al. 2012; Li et al.
2011; Lv et al. 2012; Paravastu et al. 2008; Paravastu et al. 2009; Qiang et al. 2012;
Sivanandam et al. 2011; Van Melckebeke et al. 2010; Wasmer et al. 2008). To date, twenty-
five unique protein structures determined by MAS NMR have been deposited in the protein
data bank (Bernstein et al. 1977; Warschawski 2011) and further advances in NMR
methodology, high field instrumentation, and sensitivity-enhancing techniques, such as
dynamic nuclear polarization, promise to increase this number dramatically in the near
future.
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The first step in determining a protein structure by NMR is identifying and assigning
individual nuclear resonances. For large biomolecules this often requires 3D heteronuclear
experiments to remove degeneracies. For MAS NMR, the typical assignment protocol relies
on a set of complementary 3D 13C detected spectra that include NCOCX, NCaCX, and
CONCa (or CaNCO). These experiments provide intra-residue correlations (NCaCX) and
inter-residue correlations (NCOCX and CONCa) that, in principle, establish complete
backbone and sidechain connectivities. In combination with both selective and extensive
labeling, this approach has been applied successfully to a number of systems (Higman et al.
2009; Sperling et al. 2010; Bockmann 2008; Bayro et al. 2010).

One-bond 15N-13C transfers following 15N evolution in NCC experiments are typically
achieved with SPECIFIC-CP (Baldus et al. 1998) rather than other N-C recoupling methods
such as TEDOR (Hing et al. 1992) or broadband DCP (Schaefer et al. 1979). This is
motivated by the fact that SPECIFIC-CP transfers should, in principle, yield the highest
transfer efficiencies (theoretically up to 73%). While other heteronuclear recoupling
methods have been proposed to compensate for rf imperfections (Kehlet et al. 2007; Hansen
et al. 2007) and may arguably perform better than SPECIFIC-CP, SPECIFIC-CP remains
the most widely used method. As such, it provides a good benchmark for assessing
alternative approaches. Other heteronuclear (primarily 13C-15N) recoupling methods include
REDOR (Gullion and Schaefer 1989), FDR (Bennett et al. 1994), SFAM (Fu et al. 1997),
RFDRCP (Sun et al. 1995),  and  (Brinkmann and Levitt 2001; Zhao et al. 2001)
and PAIN-CP (Lewandowski et al. 2007). The robustness of these sequences can be
distinguished by a number of criteria, including chemical shift offset dependence, scaling of
the recoupling effect, power stability, and sensitivity to experimental imperfections. It is
important to consider such practical differences when selecting mixing schemes for
correlation spectroscopy in proteins, particularly when two or more methods are integrated
into a single experiment.

An additional consideration arises from molecular motion. While nearly-ideal SPECIFIC-
CP transfer efficiencies are reported for rigid crystalline or microcrystalline systems, such as
the N-f-MLF-OH peptide (Rienstra et al. 2000) and the GB1 protein (Franks et al. 2005), the
situation is very different for non-crystalline systems, including some membrane proteins
and amyloid fibrils where the SPECIFIC-CP transfer is adversely affected by molecular
motions on the intermediate timescale (Sperling et al. 2010).

ZF-TEDOR and BASE-TEDOR (Jaroniec et al. 2002b) are popular methods for measuring
precise long-range intra-molecular (Jaroniec et al. 2002a) and intermolecular (Nieuwkoop
and Rienstra 2010) distance constraints. Rienstra and coworkers have also reported success
in using short and medium-range TEDOR, combined with 2-13C and 1,3-13C glycerol
labeling, to obtain proline and glycine assignments and connectivities in 2D experiments
(Sperling et al. 2010). Furthermore, Jaroniec and coworkers showed that a semi-constant-
time (SCT)-TEDOR scheme boosts the sensitivity for weak 15N-13C(methyl) signals,
permitting selective measurement of distances longer than 3.5 Å in uniformly 13C-15N
labeled proteins (Helmus et al. 2008). However, TEDOR has not been widely applied for
one-bond transfers in 3D NCC experiments. Although a 2D version of the NCC transfer
experiment has been used for assignment of RNAs (Riedel et al. 2005), and the 3D version
has recently been implemented for a membrane protein (Andreas et al. 2012), neither of
these studies addressed the merits of the TEDOR transfer step relative to other N-C transfer
mechanisms.

Here we present detailed comparisons of SPECIFIC-CP and ZF-TEDOR transfer efficiency
in uniformly 15N,13C labeled GB1 and GvpA. These data motivate a 3D TEDOR-DARR
pulse sequence that allows us to generate simultaneous NCaCX and NCOCX correlations in
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a single 3D experiment. The increased sweep width for the second indirect dimension can be
easily compensated for by non-uniform sampling (Eddy et al. 2012b; Matsuki et al. 2010;
Matsuki et al. 2009) or by simply folding the spectra (Andreas et al. 2012).

Materials and Methods
Sample preparation

Uniformly 13C,15N GB1 was prepared according to previously published protocols (Franks
et al. 2005; Schmidt et al. 2007). Uniformly 13C,15N GvpA was prepared according to
previously published procedures (Bayro et al. 2012; Sivertsen et al. 2009; Sivertsen et al.
2010). The samples were centrifuged into Varian 3.2 zirconia mm rotors and the drive tips
were sealed with epoxy to maintain sample hydration.

1D MAS NMR experiments
The 1D 15N-13C spectra were obtained at a spinning frequency of 13.0 kHz, on a custom-
built spectrometer (courtesy of Dr. D. Ruben, Francis Bitter Magnet Laboratory/MIT,
Cambridge, MA) operating at 750 MHz 1H Larmor frequency and equipped with a triple-
resonance 1H/13C/15N 3.2 mm E-free probe (Bruker Biospin, Billerica MA).

The NCO SPECIFIC-CP condition was optimized to match 2.5 times the rotor frequency
(ωr) on 15N (~32.5 kHz) and 3.5 × ωr on 13C (45.5 kHz), with 100 kHz 1H CW decoupling
during the transfer. The 13C carrier was set to the middle of the CO region (176 ppm),
the 15N carrier to 115 ppm, and the 1H carrier to 4 ppm.

The NCa SPECIFIC-CP condition was optimized to match 1.5 × ωr on 15N and 2.5 × ωr
on 13C, with 100 kHz 1H CW decoupling during the transfer. The 13C carrier was set to 57
ppm, the 15N carrier to 115 ppm, and the 1H carrier to 4 ppm. The optimal NCa contact time
was found to be 6 ms for both GB1 and GvpA.

Broadband DCP was optimized for overall (both NCa and NCO) transfer efficiencies. This
caused suboptimal NCO and NCa transfers individually, but gave the overall highest
simultaneous signal. To achieve this, the 13C carrier was set to 110 ppm, with radio
frequency matching conditions of 2.5 × ωr on 15N (~32.5 kHz) and 3.5 × ωr on 13C (45.5
kHz), and 100 kHz 1H CW decoupling during the transfer. The optimal DCP contact time
was found to be 7 ms for both GB1 and GvpA.

The ZF-TEDOR experiments were performed using 50 kHz for both 13C and 15N. The
mixing period was optimized to 1.28 ms for one bond 15N-13C transfer. (Jaroniec et al.
2002b).

For all 1D comparisons, 83 kHz TPPM 1H decoupling was used during acquisition (total
phase difference,18°; TPPM pulse length 5.8 μs). Chemical shifts were referenced using the
DSS scale (Morcombe and Zilm 2003), with adamantane (40.48 ppm for 13C) as a
secondary standard. Relative NCO transfer efficiencies were determined by integrating the
region from 170 ppm to 182 ppm (omitting the carboxyl peaks) for GB1 and GV, while
relative NCa transfer efficiencies were determined by integrating the region from 50 ppm to
63 ppm for GV and 47 ppm to 63 ppm for GB1, assuring that only polarization from Ca
carbons was used to evaluate transfer efficiencies.

3D MAS NMR experiments
The TEDOR-DARR pulse sequence for these experiments is shown in Figure 1. In these
experiments, the dwell time in the ω1 dimension was synchronized to twice the rotor period
(corresponding to bandwidth of ωR/2), in order to fold the nitrogen spinning sidebands onto
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the centerband and to retain the heteronuclear dipolar recoupling during each TEDOR
period. As a consequence, the resonances of the amino terminus of the backbone and the
lysine sidechains are folded. The chemical shifts were referenced using the DSS scale
(Morcombe and Zilm 2003), with adamantane (40.48 ppm for 13C) as a secondary standard.
All the data were processed with the nmrPipe (Delaglio et al. 1995), and subsequently
analyzed using Sparky (Goddard and Kneller).

The 3D experiments on GB1 were performed using a custom-built spectrometer (courtesy of
Dr. D. Ruben, Francis Bitter Magnet Laboratory/MIT, Cambridge, MA) operating at 700
MHz 1H Larmor frequency and equipped with a triple-resonance 1H/13C/15N probe with a
3.2 mm MAS stator (1H/13C/15N Varian-Chemagnetics Palo Alto, CA). The spinning
frequency of 13.3 kHz, regulated to ± 5 Hz using a Bruker (Bruker Biospin, Billerica, MA)
spinning frequency controller, was set to avoid overlap of rotational resonance of the
carbonyl sidebands with the aromatic and aliphatic signals in the acquisition dimension (ω3).
The 13C and 15N π/2 pulses were 5 μs. TPPM decoupling was 71 kHz (total phase
difference,18°; TPPM pulse length 6.8 μs) during gaps between REDOR pulses and 71 kHz
(total phase difference 22°; TPPM pulse length 6.8 μs) during evolution and acquisition
periods. Mixing periods were 1.2 ms for ZF-TEDOR, optimized for one-bond transfers, and
40 ms for DARR. The 3D data set was acquired using 60 × 210 × 1024 points and dwell
times of 150.4, 30 and 16 μs for ω1, ω2 and ω3 respectively. Each FID averaged four scans
using a recycle delay of 2.3 s for a total experimental time of 5.5 days.

The 3D experiments on gas vesicles were performed using a Bruker spectrometer (Bruker
Biospin, Billerica, MA) operating at 900 MHz 1H Larmor frequency and equipped with a
triple-resonance 3.2 mm 1H/13C/15N e-free MAS probe (Bruker Biospin, Billerica, MA).
The spinning frequency of 16.6 kHz, regulated to ± 2 Hz, was set to avoid overlap of the
carbonyl sidebands with the aromatic and aliphatic signals in the acquisition dimension (ω3).
The 15N and 13C π/2 pulses were 7.1 μs and 3.5 μs, respectively. TPPM decoupling was 83
kHz (total phase difference 18°; TPPM pulse length 5.7 μs) during gaps between REDOR
pulses, evolution and acquisition periods. Mixing periods were 1.4 ms for ZF-TEDOR and
40 ms for DARR. The 3D data set was acquired using 56 × 210 × 1536 points and dwell
times of 120, 30 and 6 μs for ω1, ω2 and ω3,, respectively. Each FID averaged four scans
using a recycle delay of 2.3 s for a total experimental time of 5.2 days.

Results and Discussion
Figure 2 compares polarization transfer by SPECIFIC-CP, broadband DCP and ZF-
TEDOR 15N-13C transfers for GB1 (top) and GvpA (bottom). As expected, we found that
higher 15N-13C transfer efficiencies for GB1 were achieved with SPECIFIC-CP. Consistent
with previously reported results (Franks et al. 2005), signal intensities for NCO and NCa
transfers in GB1 were approximately 55% and 42%, respectively, of those obtained
by 1H-13C cross-polarization, These efficiencies were approximately 1.6 and 1.45 times
greater, respectively, than for one-bond optimized ZF-TEDOR. The situation was
significantly different in the case of gas vesicles. The SPECIFIC-CP NCO transfer is only
1.17 times more efficient than one-bond ZF-TEDOR and the NCa transfers are practically
identical. Table 1 summarizes these 1D comparisons and corresponding results for DCP.
The loss of peak intensity induced by mobility in presence of decoupling is a well known
effect that has been observed in -NH3

+ group of alanine (Long et al. 1994), in methyl groups
coordinated to tungsten (Maus et al. 1996), and in N-f-MLF-OH (Bajaj et al. 2009). Studies
are under way to fully understand this effect.

Figure 3 shows that SPECIFIC-CP is more sensitive than TEDOR to varying levels of 1H
decoupling during transfer in GvpA. It follows that power fluctuations during decoupling,

Daviso et al. Page 4

J Biomol NMR. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



e.g., due to probe detuning, would result in sensitivity loss. This can be a limiting factor at
high field and with e-free probes.

In light of the above results, and the ability of TEDOR to implement broadband
heteronuclear transfers, 3D NCC experiments were performed using TEDOR, with a mixing
time of 1.2 ms chosen to restrict polarization transfer to the carbons directly bonded to
nitrogen atoms. For the homonuclear transfer DARR was used with a mixing time of 40 ms
chosen to allow polarization to be transferred far enough to detect cross-peaks throughout
the sidechains.

Figure 4 shows slices of the GB1 spectrum in the ω1 15N plane at 127.7, 116.3 and 118.3
ppm corresponding to the L12, V21 and V54 amides. For both the intra-residue correlations
(top) and the inter-residue correlations (bottom), the second mixing spreads the polarization
along the full length of the side chain thus allowing optimal resolution of all the 13C signals
in a single experiment. The resonances are consistent, within ± 0.2 ppm, with previously
published assignments (Franks et al. 2005).

Mobile sequences in proteins usually present weak crosspeaks in SPECIFIC-CP
experiments, due to unfavorable intermediate timescale dynamics induced by interference
with proton decoupling fields. We therefore examined the performance of the TEDOR-
DARR sequence on GvpA, a functional amyloid (Bayro et al. 2012) in which mobility may
limit the signal intensity. Figure 5 shows examples of intra-residue and inter-residue
correlations for GvpA in the ω1 15N planes at 116.6 ppm and 124.2 ppm, corresponding
respectively to the S49 and A57 amides. As expected, the resonances are broader than for
the microcrystalline GB1, but the side chain correlations are clearly resolved.

A further advantage of the TEDOR-CC experiment is the inclusion of 15N-13C correlations
within the sidechains of residues such as tryptophan, arginine and lysine. As shown in
Figure 6 for W28, R44 and K55 in GvpA, consistent intra-residue cross-peaks are seen in
slices corresponding to the backbone and sidechain nitrogens. TEDOR mixing would also
include prolines. However, this capability is not illustrated here because proline is not
present in GB1 and the single proline residue in GvpA is in the highly mobile C-terminal
sequence.

Conclusions
In conclusion, we have shown that a 3D TEDOR-DARR MAS experiment generates a full
set of intra- and inter-residue correlations allowing assignments to be completed in a single
experiment. In future work at higher spinning frequencies, a useful variation might be a
TEDOR-PAR sequence.
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Figure 1.
The 3D NCC z-filtered TEDOR-DARR pulse sequence. Narrow and wide filled rectangles
represent π/2 and π pulses, respectively. During the TEDOR mixing, π pulses are applied
on the 15N channel and phase cycled according to the xy-4 scheme. The short delay, τ, after
the f1 15N evolution period ensures that the total delay between the REDOR mixing periods
is equal to an integer of rotor cycles as required for efficient reconversion of the anti-phase
coherences into observable 13C magnetization. In the experiment presented here, the value
of τ was set to in order to maintain rotor synchronization since the dwell time for the f1 15N
dimension has been chosen to be exactly two rotor periods. During the z-filters and the
DARR mixing time, a weak proton field, ωrf= ωr, was applied to facilitate the rapid
dephasing of transverse 13C spin coherences and to promote proton driven spin diffusion of
z-magnetization of 13C spin population, respectively. The adopted phase cycles are:
Φ1=1111, Φ2=2222, Φ3=Φ6 =1111, Φ4=Φ7=1111, Φ5=1111, Φ8=2244, Φ9=1111,
Φ10=2244, Φ11=1111, Φ12=1111, Φ13 =1313, and Φrec=4224.
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Figure 2.
1D 13C detected comparison of 15N-13C transfer methods for GB1 (top) and Gvpa (bottom)
in the CO (left) and Ca regions (right). 1D 13C CP only (dash), SPECIFIC-CP (dot),
broadband DCP (dash-dot-dot), and one-bond optimized ZF-TEDOR (dash-dot). 100
kHz 1H decoupling was used during all the 15N-13C recoupling periods.
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Figure 3.
1D 13C detected comparisons of 15N-13C heteronuclear transfer at varying levels of 1H
decoupling in GvpA. Top: SPECIFIC-CP NCa with 100 kHz (dash), 83 kHz (dot), and 71
kHz (dash-dot) 1H decoupling. Bottom: 1.28 ms TEDOR with 100 kHz (dash), 83 kHz (dot),
and 71 kHz (dash-dot) 1H decoupling.
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Figure 4.
Slices of the ZF-TEDOR-DARR spectrum of GB1 at the 15N frequencies of the L12 (A),
V21 (B) and V54 (C) amides.

Daviso et al. Page 13

J Biomol NMR. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Slices of the ZF-TEDOR-DARR spectrum of GvpA at the 15N frequencies of the S49 (A)
and Y56 (B) amides.
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Figure 6.
Sidechain correlations by 15N-13C polarization transfer from both backbone and sidechain
nitrogens in W28 (A), R44 (B) and K55 (C) of GvpA.

Daviso et al. Page 15

J Biomol NMR. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Daviso et al. Page 16

Ta
bl

e 
1

R
el

at
iv

e 
15

N
-13

C
 tr

an
sf

er
 e

ff
ic

ie
nc

ie
s 

fo
r 

G
B

1 
an

d 
G

vp
A

.

Sa
m

pl
e

13
C

 C
P

SP
E

C
IF

IC
 C

P
 N

C
a

SP
E

C
IF

IC
 C

P
 N

C
O

B
ro

ad
ba

nd
 D

C
P

 N
C

a
B

ro
ad

ba
nd

 D
C

P
 N

C
O

Z
F

-T
E

D
O

R
 N

C
a

Z
F

-T
E

D
O

R
 N

C
O

G
B

1
1.

0
0.

42
0.

55
0.

17
0.

41
0.

29
0.

34

G
vp

A
1.

0
0.

19
0.

27
0.

05
0.

20
0.

18
0.

23

J Biomol NMR. Author manuscript; available in PMC 2014 March 01.


