632 research outputs found
Fundamental Magnetic Properties and Structural Implications for Nanocrystalline Fe-Ti-N Thin Films
The magnetization (M) as a function of temperature (T) from 2 to 300 K and
in-plane field (H) up to 1 kOe, room temperature easy and hard direction
in-plane field hysteresis loops for fields between -100 and +100 Oe, and 10 GHz
ferromagnetic resonance (FMR) profiles have been measured for a series of
soft-magnetic nano-crystalline 50 nm thick Fe-Ti-N films made by magnetron
sputtering in an in-plane field. The nominal titanium concentration was 3 at. %
and the nitrogen concentrations (xN) ranged from zero to 12.7 at. %. The
saturation magnetization (Ms) vs. T data and the extracted exchange parameters
as a function of xN are consistent with a lattice expansion due to the addition
of interstitial nitrogen in the body-centered-cubic (bcc) lattice and a
structural transition to body-centered-tetragonal (bct) in the 6-8 at. %
nitrogen range. The hysteresis loop and FMR data show a consistent picture of
the changes in both the uniaxial and cubic anisotropy as a function of xN.
Films with xN > 1.9 at. % show an overall uniaxial anisotropy, with an
anisotropy field parameter Hu that increases with xN. The corresponding
dispersion averaged uniaxial anisotropy energy density parameter = HuMs/2
is a linear function of xN, with a rate of increase of 950 erg/cm3 per at. %
nitrogen. The estimated uniaxial anisotropy energy per nitrogen atom is 30
J/mol, a value consistent with other systems. For xN below 6 at. %, the scaling
of coercive force Hc data with the sixth power of the grain size D indicate a
grain averaged effective cubic anisotropy energy density parameter that is
about an order of magnitude smaller that the nominal K1 values for iron, and
give a quantitative vs. D response that matches predictions for exchange
coupled random grains with cubic anisotropy.Comment: 13 pages, 7 figure
Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study
In this paper a detailed numerical study (in frames of the Slonczewski
formalism) of magnetization oscillations driven by a spin-polarized current
through a thin elliptical nanoelement is presented. We show that a
sophisticated micromagnetic model, where a polycrystalline structure of a
nanoelement is taken into account, can explain qualitatively all most important
features of the magnetization oscillation spectra recently observed
experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely:
existence of several equidistant spectral bands, sharp onset and abrupt
disappearance of magnetization oscillations with increasing current, absence of
the out-of-plane regime predicted by a macrospin model and the relation between
frequencies of so called small-angle and quasichaotic oscillations. However, a
quantitative agreement with experimental results (especially concerning the
frequency of quasichaotic oscillations) could not be achieved in the region of
reasonable parameter values, indicating that further model refinement is
necessary for a complete understanding of the spin-driven magnetization
precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions
on the page have been changed to ensure correct placements of the figure
caption
Recommended from our members
Silicon-Based Integrated Label-Free Optofluidic Biosensors: Latest Advances and Roadmap
By virtue of the well-developed micro- and nanofabrication technologies and rapidly progressing surface functionalization strategies, silicon-based devices have been widely recognized as a highly promising platform for the next-generation lab-on-a-chip bioanalytical systems with a great potential for point-of-care medical diagnostics. Herein, an overview of the latest advances in silicon-based integrated optofluidic label-free biosensing technologies relying on the efficient interactions between the evanescent light field at the functionalized surface and specifically bound analytes is presented. State-of-the-art technologies demonstrating label-free evanescent wave-based biomarker detection mainly encompass three device configurations, including on-chip waveguide-based interferometers, microring resonators, and photonic-crystal-based cavities. Moreover, up-to-date strategies for elevating the sensitivities and also simplifying the sensing processes are discussed. Emerging laboratory prototypes with advanced integration and packaging schemes incorporating automatic microfluidic components or on-chip optoelectronic devices lead to one significant step forward in real applications of decentralized diagnostics. Besides, particular attention is paid to currently commercialized label-free optical bioanalytical models on the market. Finally, the prospects are elaborated with several research routes toward chip-scale, low-cost, highly sensitive, multi-functional, and user-friendly bioanalytical systems benefiting to global healthcare. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
The Projective Line Over the Finite Quotient Ring GF(2)[]/ and Quantum Entanglement I. Theoretical Background
The paper deals with the projective line over the finite factor ring
GF(2)[]/. The line is endowed with 18
points, spanning the neighbourhoods of three pairwise distant points. As
is not a local ring, the neighbour (or parallel) relation is
not an equivalence relation so that the sets of neighbour points to two distant
points overlap. There are nine neighbour points to any point of the line,
forming three disjoint families under the reduction modulo either of two
maximal ideals of the ring. Two of the families contain four points each and
they swap their roles when switching from one ideal to the other; the points of
the one family merge with (the image of) the point in question, while the
points of the other family go in pairs into the remaining two points of the
associated ordinary projective line of order two. The single point of the
remaining family is sent to the reference point under both the mappings and its
existence stems from a non-trivial character of the Jacobson radical, , of the ring. The factor ring is isomorphic to GF(2)
GF(2). The projective line over features nine
points, each of them being surrounded by four neighbour and the same number of
distant points, and any two distant points share two neighbours. These
remarkable ring geometries are surmised to be of relevance for modelling
entangled qubit states, to be discussed in detail in Part II of the paper.Comment: 8 pages, 2 figure
Harmonic Generation from Relativistic Plasma Surfaces in Ultra-Steep Plasma Density Gradients
Harmonic generation in the limit of ultra-steep density gradients is studied
experimentally. Observations demonstrate that while the efficient generation of
high order harmonics from relativistic surfaces requires steep plasma density
scale-lengths () the absolute efficiency of the harmonics
declines for the steepest plasma density scale-length , thus
demonstrating that near-steplike density gradients can be achieved for
interactions using high-contrast high-intensity laser pulses. Absolute photon
yields are obtained using a calibrated detection system. The efficiency of
harmonics reflected from the laser driven plasma surface via the Relativistic
Oscillating Mirror (ROM) was estimated to be in the range of 10^{-4} - 10^{-6}
of the laser pulse energy for photon energies ranging from 20-40 eV, with the
best results being obtained for an intermediate density scale-length
Effect of the hard magnetic inclusion on the macroscopic anisotropy of nanocrystalline magnetic-materials
It is shown that the presence of highly anisotropic magnetic precipitates in a soft multiphased matrix can produce a remarkable hardening, even when the volume fraction of the precipitates is small. The exchange coupling between the matrix and the precipitates is the relevant parameter. In particular, the simplified analysis we develop in this paper accounts for the magnetic hardening observed in very soft Fe-rich nanocrystals after annealing at higher temperatures
Structure peculiarities of cementite and their influence on the magnetic characteristics
The iron carbide is studied by the first-principle density functional
theory. It is shown that the crystal structure with the carbon disposition in a
prismatic environment has the lowest total energy and the highest energy of
magnetic anisotropy as compared to the structure with carbon in an octahedron
environment. This fact explains the behavior of the coercive force upon
annealing of the plastically deformed samples. The appearance of carbon atoms
in the octahedron environment can be revealed by Mossbauer experiment.Comment: 10 pages, 3 figures, 3 tables. submitted to Phys.Rev.
Size effects in the magnetic behaviour of TbAl_2 milled alloys
The study of the magnetic properties depending upon mechanical milling of the
ferromagnetic polycrystalline TbAl_2 material is reported. The Rietveld
analysis of the X-ray diffraction data reveals a decrease of the grain size
down to 14 nm and -0.15 % of variation of the lattice parameter, after 300
hours of milling time. Irreversibility in the zero field cooled - field cooled
(ZFC-FC) DC-susceptibility and clear peaks in the AC susceptibility between 5
and 300 K show that the long-range ferromagnetic structure is inhibited in
favour of a disordered spin arrangement below 45 K. This glassy behaviour is
also deduced from the variation of the irreversibility transition with the
field (H^{2/3}) and frequency. The magnetization process of the bulk TbAl_2 is
governed by domain wall thermal activation processes. By contrast, in the
milled samples, cluster-glass properties arise as a result of cooperative
interactions due to the substitutional disorder. The interactions are also
influenced by the nanograin structure of the milled alloys, showing a variation
of coercivity with the grain size, below the crossover between the multi- and
single-domain behaviours.Comment: 23 pages, 11 figures, to appear in J. Phys.: Condens. Ma
Notas para el estudio de la política de regulación dominial de la provincia de Buenos Aires, 1990-2004
La irregularidad desde el punto de vista del dominio refiere a posesiones de inmuebles a los que se accede por vías no formales y/o en los que no se inicia o queda inconcluso el debido proceso registral, con la confección de la escritura a nombre del o los titulares del dominio.
Podemos agrupar las situaciones de irregularidad dominial según tres diferentes formas de acceso al suelo (que a su vez encierran diferentes casos): la adquisición regular sin culminar el proceso registral, la ocupación directa de tierras, la compra en el mercado irregular (Clichevsky 2003).
Cuando la irregularidad está referida a las condiciones urbanoambientales se trata de casos que no cumplen con las normas urbanísticas que fijan estándares mínimos de habitabilidad: son áreas habitadas emplazadas en zonas no aptas para residencia (planicies de inundación de los cursos de agua, bañados, áreas contaminadas o de pendiente pronunciada, entre otras) o de parcelas y/o construcciones que no cumplen con la normativa vigente al respecto.Facultad de Humanidades y Ciencias de la Educació
- …