632 research outputs found

    Fundamental Magnetic Properties and Structural Implications for Nanocrystalline Fe-Ti-N Thin Films

    Full text link
    The magnetization (M) as a function of temperature (T) from 2 to 300 K and in-plane field (H) up to 1 kOe, room temperature easy and hard direction in-plane field hysteresis loops for fields between -100 and +100 Oe, and 10 GHz ferromagnetic resonance (FMR) profiles have been measured for a series of soft-magnetic nano-crystalline 50 nm thick Fe-Ti-N films made by magnetron sputtering in an in-plane field. The nominal titanium concentration was 3 at. % and the nitrogen concentrations (xN) ranged from zero to 12.7 at. %. The saturation magnetization (Ms) vs. T data and the extracted exchange parameters as a function of xN are consistent with a lattice expansion due to the addition of interstitial nitrogen in the body-centered-cubic (bcc) lattice and a structural transition to body-centered-tetragonal (bct) in the 6-8 at. % nitrogen range. The hysteresis loop and FMR data show a consistent picture of the changes in both the uniaxial and cubic anisotropy as a function of xN. Films with xN > 1.9 at. % show an overall uniaxial anisotropy, with an anisotropy field parameter Hu that increases with xN. The corresponding dispersion averaged uniaxial anisotropy energy density parameter = HuMs/2 is a linear function of xN, with a rate of increase of 950 erg/cm3 per at. % nitrogen. The estimated uniaxial anisotropy energy per nitrogen atom is 30 J/mol, a value consistent with other systems. For xN below 6 at. %, the scaling of coercive force Hc data with the sixth power of the grain size D indicate a grain averaged effective cubic anisotropy energy density parameter that is about an order of magnitude smaller that the nominal K1 values for iron, and give a quantitative vs. D response that matches predictions for exchange coupled random grains with cubic anisotropy.Comment: 13 pages, 7 figure

    Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study

    Full text link
    In this paper a detailed numerical study (in frames of the Slonczewski formalism) of magnetization oscillations driven by a spin-polarized current through a thin elliptical nanoelement is presented. We show that a sophisticated micromagnetic model, where a polycrystalline structure of a nanoelement is taken into account, can explain qualitatively all most important features of the magnetization oscillation spectra recently observed experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely: existence of several equidistant spectral bands, sharp onset and abrupt disappearance of magnetization oscillations with increasing current, absence of the out-of-plane regime predicted by a macrospin model and the relation between frequencies of so called small-angle and quasichaotic oscillations. However, a quantitative agreement with experimental results (especially concerning the frequency of quasichaotic oscillations) could not be achieved in the region of reasonable parameter values, indicating that further model refinement is necessary for a complete understanding of the spin-driven magnetization precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions on the page have been changed to ensure correct placements of the figure caption

    The Projective Line Over the Finite Quotient Ring GF(2)[xx]/<x3x>< x^{3} - x> and Quantum Entanglement I. Theoretical Background

    Full text link
    The paper deals with the projective line over the finite factor ring R_R\_{\clubsuit} \equiv GF(2)[xx]/. The line is endowed with 18 points, spanning the neighbourhoods of three pairwise distant points. As R_R\_{\clubsuit} is not a local ring, the neighbour (or parallel) relation is not an equivalence relation so that the sets of neighbour points to two distant points overlap. There are nine neighbour points to any point of the line, forming three disjoint families under the reduction modulo either of two maximal ideals of the ring. Two of the families contain four points each and they swap their roles when switching from one ideal to the other; the points of the one family merge with (the image of) the point in question, while the points of the other family go in pairs into the remaining two points of the associated ordinary projective line of order two. The single point of the remaining family is sent to the reference point under both the mappings and its existence stems from a non-trivial character of the Jacobson radical, J_{\cal J}\_{\clubsuit}, of the ring. The factor ring R~_R_/J_\widetilde{R}\_{\clubsuit} \equiv R\_{\clubsuit}/ {\cal J}\_{\clubsuit} is isomorphic to GF(2) \otimes GF(2). The projective line over R~_\widetilde{R}\_{\clubsuit} features nine points, each of them being surrounded by four neighbour and the same number of distant points, and any two distant points share two neighbours. These remarkable ring geometries are surmised to be of relevance for modelling entangled qubit states, to be discussed in detail in Part II of the paper.Comment: 8 pages, 2 figure

    Harmonic Generation from Relativistic Plasma Surfaces in Ultra-Steep Plasma Density Gradients

    Get PDF
    Harmonic generation in the limit of ultra-steep density gradients is studied experimentally. Observations demonstrate that while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale-lengths (Lp/λ<1L_p/\lambda < 1) the absolute efficiency of the harmonics declines for the steepest plasma density scale-length Lp0L_p \to 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the Relativistic Oscillating Mirror (ROM) was estimated to be in the range of 10^{-4} - 10^{-6} of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale-length

    Effect of the hard magnetic inclusion on the macroscopic anisotropy of nanocrystalline magnetic-materials

    Get PDF
    It is shown that the presence of highly anisotropic magnetic precipitates in a soft multiphased matrix can produce a remarkable hardening, even when the volume fraction of the precipitates is small. The exchange coupling between the matrix and the precipitates is the relevant parameter. In particular, the simplified analysis we develop in this paper accounts for the magnetic hardening observed in very soft Fe-rich nanocrystals after annealing at higher temperatures

    Structure peculiarities of cementite and their influence on the magnetic characteristics

    Full text link
    The iron carbide Fe3CFe_3C is studied by the first-principle density functional theory. It is shown that the crystal structure with the carbon disposition in a prismatic environment has the lowest total energy and the highest energy of magnetic anisotropy as compared to the structure with carbon in an octahedron environment. This fact explains the behavior of the coercive force upon annealing of the plastically deformed samples. The appearance of carbon atoms in the octahedron environment can be revealed by Mossbauer experiment.Comment: 10 pages, 3 figures, 3 tables. submitted to Phys.Rev.

    Size effects in the magnetic behaviour of TbAl_2 milled alloys

    Full text link
    The study of the magnetic properties depending upon mechanical milling of the ferromagnetic polycrystalline TbAl_2 material is reported. The Rietveld analysis of the X-ray diffraction data reveals a decrease of the grain size down to 14 nm and -0.15 % of variation of the lattice parameter, after 300 hours of milling time. Irreversibility in the zero field cooled - field cooled (ZFC-FC) DC-susceptibility and clear peaks in the AC susceptibility between 5 and 300 K show that the long-range ferromagnetic structure is inhibited in favour of a disordered spin arrangement below 45 K. This glassy behaviour is also deduced from the variation of the irreversibility transition with the field (H^{2/3}) and frequency. The magnetization process of the bulk TbAl_2 is governed by domain wall thermal activation processes. By contrast, in the milled samples, cluster-glass properties arise as a result of cooperative interactions due to the substitutional disorder. The interactions are also influenced by the nanograin structure of the milled alloys, showing a variation of coercivity with the grain size, below the crossover between the multi- and single-domain behaviours.Comment: 23 pages, 11 figures, to appear in J. Phys.: Condens. Ma

    Notas para el estudio de la política de regulación dominial de la provincia de Buenos Aires, 1990-2004

    Get PDF
    La irregularidad desde el punto de vista del dominio refiere a posesiones de inmuebles a los que se accede por vías no formales y/o en los que no se inicia o queda inconcluso el debido proceso registral, con la confección de la escritura a nombre del o los titulares del dominio. Podemos agrupar las situaciones de irregularidad dominial según tres diferentes formas de acceso al suelo (que a su vez encierran diferentes casos): la adquisición regular sin culminar el proceso registral, la ocupación directa de tierras, la compra en el mercado irregular (Clichevsky 2003). Cuando la irregularidad está referida a las condiciones urbanoambientales se trata de casos que no cumplen con las normas urbanísticas que fijan estándares mínimos de habitabilidad: son áreas habitadas emplazadas en zonas no aptas para residencia (planicies de inundación de los cursos de agua, bañados, áreas contaminadas o de pendiente pronunciada, entre otras) o de parcelas y/o construcciones que no cumplen con la normativa vigente al respecto.Facultad de Humanidades y Ciencias de la Educació
    corecore