1,218 research outputs found

    Numerical Investigation of Residual Stresses in Welded Thermoplastic CFRP Structures

    Get PDF
    Using thermoplastics as the matrix in carbon fiber-reinforced polymers (CFRP) offers the possibility to make use of welded joints, which results in weight savings compared to conventional joining methods using mechanical fasteners. In this paper, the resulting temperature distribution in the material due to resistance welding is investigated by transient finite element (FE) simulations. To examine the effects on the component structure, a numerical modeling approach is created, which allows determining the residual stresses caused by the welding process. It is shown that the area of the structure, especially near the joining zone, is highly affected by the process, especially in terms of residual stresses. In particular, the stresses perpendicular to the fiber direction show failure relevant values up to a maximum of 221 MPa, which might lead to the formation of microcracks in the matrix. In turn, that is assumed to be critical in terms of the fatigue of welded composite structures. Thus, the suggested modeling approach provides residual stresses that can be used to determine their effects on the strength, structural stability, and fatigue of such composite structures. In a subsequent step, these findings could play an important role in the design process of thermoplastic composite structures

    (E)-2,6-Dibromo-4-{2-[1-(1H,1H,2H,2H-perfluorooctyl)pyridinium-4-yl]ethenyl}phenolate methanol disolvate, a fluoroponytailed solvatochromic dye

    Get PDF
    The title compound, Csb21sb 21Hsb12sb 12Brsb2sb 2Fsb13sb 13NOotot2CHsb3sb 3OH, was obtained by condensation of 4-methyl-1-(1it H,1it H,2it H,2it H-perfluorooctyl)pyridinium iodide and 3,5-dibromo-4-hydroxybenzaldehyde, followed by deprotonation. It crystallizes as a methanol disolvate and exhibits short O---HotsotsO hydrogen bonds and a disordered perfluoroalkyl chain [occupancy ratio 0.538(7):0.462(7)]. Significant −−-- stacking interactions are observed between the benzene and pyridine rings of neighbouring molecules along the it b-axis direction.Peer reviewe

    In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.</p> <p>Results</p> <p>We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 – 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a <it>de novo </it>motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.</p> <p>Conclusion</p> <p>Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The <it>de novo </it>motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.</p

    Morphological and physiological characterization of filamentous Lentzea aerocolonigenes: Comparison of biopellets by microscopy and flow cytometry

    Get PDF
    Cell morphology of filamentous microorganisms is highly interesting during cultivations as it is often linked to productivity and can be influenced by process conditions. Hence, the characterization of cell morphology is of major importance to improve the understanding of industrial processes with filamentous microorganisms. For this purpose, reliable and robust methods are necessary. In this study, pellet morphology and physiology of the rebeccamycin producing filamentous actinomycete Lentzea aerocolonigenes were investigated by microscopy and flow cytometry. Both methods were compared regarding their applicability. To achieve different morphologies, a cultivation with glass bead addition (Ø = 969 μm, 100 g L-1) was compared to an unsupplemented cultivation. This led to two different macro-morphologies. Furthermore, glass bead addition increased rebeccamycin titers after 10 days of cultivation (95 mg L-1 with glass beads, 38 mg L-1 without glass beads). Macro-morphology and viability were investigated through microscopy and flow cytometry. For viability assessment fluorescent staining was used additionally. Smaller, more regular pellets were found for glass bead addition. Pellet diameters resulting from microscopy followed by image analysis were 172 μm without and 106 μm with glass beads, diameters from flow cytometry were 170 and 100 μm, respectively. These results show excellent agreement of both methods, each considering several thousand pellets. Furthermore, the pellet viability obtained from both methods suggested an enhanced metabolic activity in glass bead treated pellets during the exponential production phase. However, total viability values differ for flow cytometry (0.32 without and 0.41 with glass beads) and confocal laser scanning microscopy of single stained pellet slices (life ratio in production phase of 0.10 without and 0.22 with glass beads), which is probably caused by the different numbers of investigated pellets. In confocal laser scanning microscopy only one pellet per sample could be investigated while flow cytometry considered at least 50 pellets per sample, resulting in an increased statistical reliability

    Advancing the 3Rs: innovation, implementation, ethics and society

    Full text link
    The 3Rs principle of replacing, reducing and refining the use of animals in science has been gaining widespread support in the international research community and appears in transnational legislation such as the European Directive 2010/63/EU, a number of national legislative frameworks like in Switzerland and the UK, and other rules and guidance in place in countries around the world. At the same time, progress in technical and biomedical research, along with the changing status of animals in many societies, challenges the view of the 3Rs principle as a sufficient and effective approach to the moral challenges set by animal use in research. Given this growing awareness of our moral responsibilities to animals, the aim of this paper is to address the question: Can the 3Rs, as a policy instrument for science and research, still guide the morally acceptable use of animals for scientific purposes, and if so, how? The fact that the increased availability of alternatives to animal models has not correlated inversely with a decrease in the number of animals used in research has led to public and political calls for more radical action. However, a focus on the simple measure of total animal numbers distracts from the need for a more nuanced understanding of how the 3Rs principle can have a genuine influence as a guiding instrument in research and testing. Hence, we focus on three core dimensions of the 3Rs in contemporary research: (1) What scientific innovations are needed to advance the goals of the 3Rs? (2) What can be done to facilitate the implementation of existing and new 3R methods? (3) Do the 3Rs still offer an adequate ethical framework given the increasing social awareness of animal needs and human moral responsibilities? By answering these questions, we will identify core perspectives in the debate over the advancement of the 3Rs

    Directed evolution of a far-red fluorescent rhodopsin

    Get PDF
    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life. A member of this protein family, Archaerhodopsin-3 (Arch) of halobacterium Halorubrum sodomense, was recently shown to function as a fluorescent indicator of membrane potential when expressed in mammalian neurons. Arch fluorescence, however, is very dim and is not optimal for applications in live-cell imaging. We used directed evolution to identify mutations that dramatically improve the absolute brightness of Arch, as confirmed biochemically and with live-cell imaging (in Escherichia coli and human embryonic kidney 293 cells). In some fluorescent Arch variants, the pK_a of the protonated Schiff-base linkage to retinal is near neutral pH, a useful feature for voltage-sensing applications. These bright Arch variants enable labeling of biological membranes in the far-red/infrared and exhibit the furthest red-shifted fluorescence emission thus far reported for a fluorescent protein (maximal excitation/emission at ∼620 nm/730 nm)
    • …
    corecore