17 research outputs found

    GPGPU computation and visualization of three-dimensional cellular automata

    Get PDF
    This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method's efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CP

    GPGPU computation and visualization of three-dimensional cellular automata

    Get PDF
    This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU

    EfficacitĂ© des traitements disponibles pour lutter contre les pucerons de la betterave: Avis de l’Anses Rapport d’expertise collective

    No full text
    Anses. (2021). EfficacitĂ© des traitements alternatifs aux nĂ©onicotinoĂŻdes pour lutter contre les pucerons de la betterave. (saisine 2020-SA-0102). Maisons-Alfort : Anses, 137 p.Les pucerons, notamment Aphis fabae et Myzus persicae, sont trĂšs nuisibles pour les cultures de betteraves du fait de leur capacitĂ© Ă  transmettre les virus responsables des jaunisses de la betterave. Jusqu’en 2018, la protection phytosanitaire Ă©tait assurĂ©e par le traitement systĂ©matique des semences avec des substances actives de la famille des nĂ©onicotinoĂŻdes (imidaclopride ou thiamĂ©thoxam seuls, ou imadaclopride associĂ© Ă  la tĂ©fluthrine de la famille des pyrĂ©thrinoĂŻdes), dont l’effet systĂ©mique permettait d’assurer une protection efficace jusqu’à la fin de la pĂ©riode Ă  risques, sans qu’il soit besoin de procĂ©der ultĂ©rieurement Ă  un traitement des parties aĂ©riennes de la plante. Cependant, l’interdiction des nĂ©onicotinoĂŻdes au 1er septembre 2018 instaurĂ©e par la Loi n°2016-1087 du 8 aoĂ»t 2016 pour la reconquĂȘte de la biodiversitĂ©, de la nature et des paysages a mis fin Ă  cette possibilitĂ© d’usage.Dans son Ă©valuation du 7 mai 2018 « mettant en balance les risques et les bĂ©nĂ©fices relatifs Ă  d’autres produits phytopharmaceutiques autorisĂ©s ou des mĂ©thodes non chimiques de prĂ©vention ou de lutte pour les usages autorisĂ©s en France des produits phytopharmaceutiques comportant des nĂ©onicotinoĂŻdes » rĂ©alisĂ©e conformĂ©ment Ă  l’article L. 253-8 du Code rural et de la pĂȘche maritime, l’Anses a recensĂ© les alternatives disponibles au dĂ©but de l’annĂ©e 2018 et a calculĂ© des indicateurs de risques et d’efficacitĂ©. Selon ce bilan, les alternatives phytopharmaceutiques aux nĂ©onicotinoĂŻdes pour le traitement des pucerons de la betterave reposaient exclusivement sur le traitement foliaire avec une substance insecticide de la famille des pyrĂ©thrinoĂŻdes, associĂ©e le cas Ă©chĂ©ant au pirimicarbe (famille des carbamates). En ce qui concerne les autres mĂ©thodes de lutte potentielles recensĂ©es, elles reposaient sur des microorganismes (champignons entomopathogĂšnes), des mĂ©diateurs chimiques (issus de composĂ©s organiques volatils vĂ©gĂ©taux), la gĂ©nĂ©tique avec le recours Ă  des variĂ©tĂ©s rĂ©sistantes au virus de la jaunisse de la betterave BWYV ou aux pucerons des espĂšces M. persicae ou A. fabae, les mĂ©thodes culturales (bandes fleuries, rĂ©duction de la profondeur et de la frĂ©quence des labours, paillage naturel, cultures intercalaires, etc.) et la stimulation des dĂ©fenses des plantes (apports d’azote et de soufre, biostimulants, etc.). Aucune mĂ©thode physique n’a Ă©tĂ© recensĂ©e. Sur cette base, aucune dĂ©rogation interministĂ©rielle n’avait Ă©tĂ© octroyĂ©e pour l’usage de nĂ©onicotinoĂŻdes vis-Ă -vis des pucerons de la betterave. En 2020, la forte pression de populations de pucerons et la forte pression parasitaire qui en a rĂ©sultĂ© a conduit Ă  l’octroi d’une dĂ©rogation au titre de l’article 53 du rĂšglement 1107/2009 pour autoriser 3 applications foliaires d’un produit insecticide Ă  base de spirotĂ©tramate. Cette dĂ©rogation permet au besoin de complĂ©ter les traitements dĂ©jĂ  autorisĂ©s, notamment le recours Ă  un produit Ă  base de flonicamide, rendu possible dĂšs le stade 2 feuilles par dĂ©cision de l’Anses du 29 avril 20201. Pour faire face Ă  une telle situation phytosanitaire en 2021 et pour rĂ©pondre Ă  la demande des acteurs de la filiĂšre de la betterave sucriĂšre, une loi2 a Ă©tĂ© votĂ©e le 14 dĂ©cembre 2020 pour permettre l’utilisation dĂ©rogatoire des produits phytopharmaceutiques Ă  base de nĂ©onicotinoĂŻdes pour la culture de betterave. Les semences de betterave traitĂ©es avec des produits phytopharmaceutiques Ă  base de nĂ©onicotinoĂŻdes (imidaclopride ou thiamĂ©thoxame) pourront ĂȘtre utilisĂ©es, aprĂšs reconduction de la dĂ©rogation, jusqu’en 2023 au plus tard

    Avis de l’Anses Rapport d’expertise collective

    No full text
    Les pucerons, notamment Aphis fabae et Myzus persicae, sont trĂšs nuisibles pour les cultures de betteraves du fait de leur capacitĂ© Ă  transmettre les virus responsables des jaunisses de la betterave. Jusqu’en 2018, la protection phytosanitaire Ă©tait assurĂ©e par le traitement systĂ©matique des semences avec des substances actives de la famille des nĂ©onicotinoĂŻdes (imidaclopride ou thiamĂ©thoxam seuls, ou imadaclopride associĂ© Ă  la tĂ©fluthrine de la famille des pyrĂ©thrinoĂŻdes), dont l’effet systĂ©mique permettait d’assurer une protection efficace jusqu’à la fin de la pĂ©riode Ă  risques, sans qu’il soit besoin de procĂ©der ultĂ©rieurement Ă  un traitement des parties aĂ©riennes de la plante. Cependant, l’interdiction des nĂ©onicotinoĂŻdes au 1er septembre 2018 instaurĂ©e par la Loi n°2016-1087 du 8 aoĂ»t 2016 pour la reconquĂȘte de la biodiversitĂ©, de la nature et des paysages a mis fin Ă  cette possibilitĂ© d’usage.Dans son Ă©valuation du 7 mai 2018 « mettant en balance les risques et les bĂ©nĂ©fices relatifs Ă  d’autres produits phytopharmaceutiques autorisĂ©s ou des mĂ©thodes non chimiques de prĂ©vention ou de lutte pour les usages autorisĂ©s en France des produits phytopharmaceutiques comportant des nĂ©onicotinoĂŻdes » rĂ©alisĂ©e conformĂ©ment Ă  l’article L. 253-8 du Code rural et de la pĂȘche maritime, l’Anses a recensĂ© les alternatives disponibles au dĂ©but de l’annĂ©e 2018 et a calculĂ© des indicateurs de risques et d’efficacitĂ©. Selon ce bilan, les alternatives phytopharmaceutiques aux nĂ©onicotinoĂŻdes pour le traitement des pucerons de la betterave reposaient exclusivement sur le traitement foliaire avec une substance insecticide de la famille des pyrĂ©thrinoĂŻdes, associĂ©e le cas Ă©chĂ©ant au pirimicarbe (famille des carbamates). En ce qui concerne les autres mĂ©thodes de lutte potentielles recensĂ©es, elles reposaient sur des microorganismes (champignons entomopathogĂšnes), des mĂ©diateurs chimiques (issus de composĂ©s organiques volatils vĂ©gĂ©taux), la gĂ©nĂ©tique avec le recours Ă  des variĂ©tĂ©s rĂ©sistantes au virus de la jaunisse de la betterave BWYV ou aux pucerons des espĂšces M. persicae ou A. fabae, les mĂ©thodes culturales (bandes fleuries, rĂ©duction de la profondeur et de la frĂ©quence des labours, paillage naturel, cultures intercalaires, etc.) et la stimulation des dĂ©fenses des plantes (apports d’azote et de soufre, biostimulants, etc.). Aucune mĂ©thode physique n’a Ă©tĂ© recensĂ©e. Sur cette base, aucune dĂ©rogation interministĂ©rielle n’avait Ă©tĂ© octroyĂ©e pour l’usage de nĂ©onicotinoĂŻdes vis-Ă -vis des pucerons de la betterave. En 2020, la forte pression de populations de pucerons et la forte pression parasitaire qui en a rĂ©sultĂ© a conduit Ă  l’octroi d’une dĂ©rogation au titre de l’article 53 du rĂšglement 1107/2009 pour autoriser 3 applications foliaires d’un produit insecticide Ă  base de spirotĂ©tramate. Cette dĂ©rogation permet au besoin de complĂ©ter les traitements dĂ©jĂ  autorisĂ©s, notamment le recours Ă  un produit Ă  base de flonicamide, rendu possible dĂšs le stade 2 feuilles par dĂ©cision de l’Anses du 29 avril 20201. Pour faire face Ă  une telle situation phytosanitaire en 2021 et pour rĂ©pondre Ă  la demande des acteurs de la filiĂšre de la betterave sucriĂšre, une loi2 a Ă©tĂ© votĂ©e le 14 dĂ©cembre 2020 pour permettre l’utilisation dĂ©rogatoire des produits phytopharmaceutiques Ă  base de nĂ©onicotinoĂŻdes pour la culture de betterave. Les semences de betterave traitĂ©es avec des produits phytopharmaceutiques Ă  base de nĂ©onicotinoĂŻdes (imidaclopride ou thiamĂ©thoxame) pourront ĂȘtre utilisĂ©es, aprĂšs reconduction de la dĂ©rogation, jusqu’en 2023 au plus tard.Afin d’anticiper au mieux les difficultĂ©s qui pourraient ĂȘtre de nouveau rencontrĂ©es en 2021 et accĂ©lĂ©rer les travaux de recherche et de dĂ©veloppement dans les directions les plus prometteuses, il est demandĂ© d’actualiser le bilan comparatif effectuĂ© en 2018 sur la base des options actuellement disponibles aux niveaux national et europĂ©en.A cette fin, il est demandĂ© de :1) Faire une synthĂšse des recherches en cours et des donnĂ©es scientifiques et techniques disponibles dans les diffĂ©rents domaines (pour dĂ©velopper des mĂ©thodes de lutte chimiques, physiques, gĂ©nĂ©tiques, avec des microorganismes ou des macroorganismes, des pratiques culturales, des mĂ©diateurs chimiques ou des stimulateurs de dĂ©fenses des plantes) ;2) Faire des recommandations sur les besoins et les perspectives Ă  court et moyen terme

    Producing sugar beets without neonicotinoids: An evaluation of alternatives for the management of viruses-transmitting aphids

    No full text
    International audienceNeonicotinoid insecticides have made possible, for three decades, to protect sugar beet crops against aphids and the viruses they transmit. However, they have been accused of reducing biodiversity, leading the European Union to ban the use of neonicotinoid-coated seeds. The requests for exemptions of use, submitted annually by different member states, might soon no longer be granted. Here, we performed a comprehensive analysis of the available alternatives to neonicotinoids for aphid control in sugar beets, following the PICO framework. The abstracts of 3878 references were consulted to evaluate alternative control methods. Of these, we selected 301 scientific publications, keeping only those which provided indications of treatment efficacy against sugar beet aphids. We identified 75 control strategies (products or methods) as possible alternatives to neonicotinoids. Each control strategy was evaluated based on four criteria: efficacy, durability, applicability and practicability. Using these criteria, we highlight 20 methods or products that have both potential as alternative to neonicotinoids and whose short-term use is feasible. These alternative methods include five synthetic and three natural insecticides, two entomopathogenic fungi, two arthropod natural enemies, organic and mineral oils, two plant defense elicitors, three farming practices and the potential of resistant varieties. Most of them provide important, but arguably insufficient, control of aphids if used alone. However, most of them appear to be complementary and compatible with each other. Therefore, integrating strategies will be needed to maintain beet yields while limiting unintended effects on environment and biodiversity

    Heavily doped Si-nanocrystals formed in P-(SiO/SiO2) multilayers: a novel route to infrared Si-based plasmonics

    No full text
    As building blocks of novel multifunctional materials involving coupling at the nanoscale, highly doped semiconductor nanocrystals are of great interest for potential applications in nanophotonics. In this work, we investigate the plasmonic properties of highly doped Si nanocrystals embedded in a silica matrix. These materials are obtained by evaporation of heavily Phosphorus-doped SiO/SiO2 multilayers in a ultrahigh vacuum chamber followed by rapid thermal annealing. For P contents between 0.7 and 1.9 at%, structural investigations at the nanoscale give clear evidence that P atoms are mainly located in the core of Si nanocrystals with concentrations reaching up to 10 at%, i.e. well beyond the solid solubility limit of P in bulk Si. Alloying and formation of SiP nanoparticles is observed for P contents exceeding 4 at% in the multilayer. Infrared absorption measurements give evidence of a localized surface plasmon resonance located in the 3 to 6 ”m range. A core-shell structure was used to model Si nanocrystals embedded in a silica matrix. Based on the Mie theory and the Drude model, both the mobility and the free charge carrier density were extracted from the simulation, with values reaching 27 cm2V-1s-1 and 2.3×1020 cm-3, respectively. This results in a dopant activation rate of about 8 %

    Heavily doped Si-nanocrystals formed in P-(SiO/SiO2) multilayers: a novel route to infrared Si-based plasmonics

    No full text
    As building blocks of novel multifunctional materials involving coupling at the nanoscale, highly doped semiconductor nanocrystals are of great interest for potential applications in nanophotonics. In this work, we investigate the plasmonic properties of highly doped Si nanocrystals embedded in a silica matrix. These materials are obtained by evaporation of heavily Phosphorus-doped SiO/SiO2 multilayers in a ultrahigh vacuum chamber followed by rapid thermal annealing. For P contents between 0.7 and 1.9 at%, structural investigations at the nanoscale give clear evidence that P atoms are mainly located in the core of Si nanocrystals with concentrations reaching up to 10 at%, i.e. well beyond the solid solubility limit of P in bulk Si. Alloying and formation of SiP nanoparticles is observed for P contents exceeding 4 at% in the multilayer. Infrared absorption measurements give evidence of a localized surface plasmon resonance located in the 3 to 6 ”m range. A core-shell structure was used to model Si nanocrystals embedded in a silica matrix. Based on the Mie theory and the Drude model, both the mobility and the free charge carrier density were extracted from the simulation, with values reaching 27 cm2V-1s-1 and 2.3×1020 cm-3, respectively. This results in a dopant activation rate of about 8 %

    Heavily doped Si-nanocrystals formed in P-(SiO/SiO2) multilayers: a novel route to infrared Si-based plasmonics

    No full text
    As building blocks of novel multifunctional materials involving coupling at the nanoscale, highly doped semiconductor nanocrystals are of great interest for potential applications in nanophotonics. In this work, we investigate the plasmonic properties of highly doped Si nanocrystals embedded in a silica matrix. These materials are obtained by evaporation of heavily Phosphorus-doped SiO/SiO2 multilayers in a ultrahigh vacuum chamber followed by rapid thermal annealing. For P contents between 0.7 and 1.9 at%, structural investigations at the nanoscale give clear evidence that P atoms are mainly located in the core of Si nanocrystals with concentrations reaching up to 10 at%, i.e. well beyond the solid solubility limit of P in bulk Si. Alloying and formation of SiP nanoparticles is observed for P contents exceeding 4 at% in the multilayer. Infrared absorption measurements give evidence of a localized surface plasmon resonance located in the 3 to 6 ”m range. A core-shell structure was used to model Si nanocrystals embedded in a silica matrix. Based on the Mie theory and the Drude model, both the mobility and the free charge carrier density were extracted from the simulation, with values reaching 27 cm2V-1s-1 and 2.3×1020 cm-3, respectively. This results in a dopant activation rate of about 8 %

    Heavily doped Si-nanocrystals formed in P-(SiO/SiO2) multilayers: a novel route to infrared Si-based plasmonics

    No full text
    As building blocks of novel multifunctional materials involving coupling at the nanoscale, highly doped semiconductor nanocrystals are of great interest for potential applications in nanophotonics. In this work, we investigate the plasmonic properties of highly doped Si nanocrystals embedded in a silica matrix. These materials are obtained by evaporation of heavily Phosphorus-doped SiO/SiO2 multilayers in a ultrahigh vacuum chamber followed by rapid thermal annealing. For P contents between 0.7 and 1.9 at%, structural investigations at the nanoscale give clear evidence that P atoms are mainly located in the core of Si nanocrystals with concentrations reaching up to 10 at%, i.e. well beyond the solid solubility limit of P in bulk Si. Alloying and formation of SiP nanoparticles is observed for P contents exceeding 4 at% in the multilayer. Infrared absorption measurements give evidence of a localized surface plasmon resonance located in the 3 to 6 ”m range. A core-shell structure was used to model Si nanocrystals embedded in a silica matrix. Based on the Mie theory and the Drude model, both the mobility and the free charge carrier density were extracted from the simulation, with values reaching 27 cm2V-1s-1 and 2.3×1020 cm-3, respectively. This results in a dopant activation rate of about 8 %
    corecore