9 research outputs found

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the

    Third-generation cephalosporin resistant gram-negative bacteraemia in patients with haematological malignancy; an 11-year multi-centre retrospective study

    No full text
    Objectives: Among patients with haematological malignancy, bacteraemia is a common complication during chemotherapy-induced neutropenia. Resistance of gram-negative bacteria (GNB) to third-generation cephalosporins (3GC) is increasing. In order to explore the value of using surveillance cultures to guide empirical treatment e.g. choosing between carbapenem versus ceftazidime- we aimed to assess the distribution of pathogens causing bacteraemia in patients with haematological malignancy, and the proportion of 3GC-resistant GNB (3GC-R GNB) bacteraemia that was preceded by 3GC-R GNB colonization. Methods: Using 11 years of data (2008–2018) from the Dutch national antimicrobial resistance surveillance system, we assessed the prevalence of 3GC-R GNB in episodes of bacteraemia, and the proportion of 3GC-R GNB bacteraemia that was preceded by 3GC-R GNB colonization. Colonization was defined as availability of any GNB surveillance isolate in the year before, independent of the causative micro-organism (time-paired isolates). Results: We included 3887 patients, representing 4142 episodes of bacteraemia. GNB were identified in 715/4142 (17.3%), of which 221 (30.9%) were 3GC-R GNB. In 139 of these 221 patients a time-paired surveillance culture was available. In 76.2% (106/139) of patients these surveillance cultures already showed 3GC-R GNB isolates in the year prior to the culture date of the 3GC-R GNB positive blood isolate. Conclusions: This multi-centre study shows that in patients with haematological malignancy, the majority of 3GC-R GNB bacteraemia is preceded by 3GC-R GNB colonization. Prospective clinical studies are needed to assess the safety and benefits of the use of surveillance-cultures to guide empirical therapy to restrict the empirical use of carbapenems in this population

    Increase in invasive group A streptococcal (Streptococcus pyogenes) infections (iGAS) in young children in the Netherlands, 2022

    No full text
    In 2022, a sevenfold increase in the number of notifiable invasive Streptococcus pyogenes (iGAS) infections among children aged 0-5 years was observed in the Netherlands compared with pre-COVID-19 pandemic years. Of 42 cases in this age group, seven had preceding or coinciding varicella zoster infections, nine were fatal. This increase is not attributable to a specific emm type. Vigilance for clinical deterioration as iGAS sign is warranted in young children, especially those with varicella zoster infection

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    textabstractAn important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data

    Antibiotic Resistance and the Risk of Recurrent Bacteremia

    No full text
    Background Direct health effects of antibiotic resistance are difficult to assess. We quantified the risk of recurrent bacteremia associated with resistance. Methods We extracted antimicrobial susceptibility testing data on blood isolates from the Dutch surveillance system for antimicrobial resistance between 2008 and 2017. First and first recurrent (4-30 days) bacteremia episodes were categorized as susceptible, single nonsusceptible, or co-nonsusceptible to third-generation cephalosporins without or with carbapenems (Enterobacteriaceae), ceftazidime without or with carbapenems (Pseudomonas species), aminopenicillins without or with vancomycin (Enterococcus species), or as methicillin-sensitive/-resistant S. aureus (MSSA/MRSA). We calculated risks of recurrent bacteremia after nonsusceptible vs susceptible first bacteremia, estimated the crude population attributable effect of resistance for the Netherlands, and calculated risks of nonsusceptible recurrent bacteremia after a susceptible first episode. Results Risk ratios for recurrent bacteremia after a single- and co-nonsusceptible first episode, respectively, vs susceptible first episode, were 1.7 (95% confidence interval [CI], 1.5-2.0) and 5.2 (95% CI, 2.1-12.4) for Enterobacteriaceae, 1.3 (95% CI, 0.5-3.1) and 5.0 (95% CI, 2.9-8.5) for Pseudomonas species, 1.4 (95% CI, 1.2-1.7) and 1.6 (95% CI, 0.6-4.2) for Enterococcus species, and 1.6 (95% CI, 1.1-2.4) for MRSA vs MSSA. The estimated population annual number of recurrent bacteremias associated with nonsusceptibility was 40. The risk of nonsusceptible recurrent bacteremia after a susceptible first episode was at most 0.4% (Pseudomonas species). Conclusions Although antibiotic nonsusceptibility was consistently associated with higher risks of recurrent bacteremia, the estimated annual number of additional recurrent episodes in the Netherlands (40) was rather limited
    corecore