2,158 research outputs found

    Stability and Thermodynamics of AdS Black Holes with Scalar Hair

    Full text link
    Recently a class of static spherical black hole solutions with scalar hair was found in four and five dimensional gauged supergravity with modified, but AdS invariant boundary conditions. These black holes are fully specified by a single conserved charge, namely their mass, which acquires a contribution from the scalar field. Here we report on a more detailed study of some of the properties of these solutions. A thermodynamic analysis shows that in the canonical ensemble the standard Schwarzschild-AdS black hole is stable against decay into a hairy black hole. We also study the stability of the hairy black holes and find there always exists an unstable radial fluctuation, in both four and five dimensions. We argue, however, that Schwarzschild-AdS is probably not the endstate of evolution under this instability.Comment: 18 pages, 4 figure

    Violation of Energy Bounds in Designer Gravity

    Get PDF
    We continue our study of the stability of designer gravity theories, where one considers anti-de Sitter gravity coupled to certain tachyonic scalars with boundary conditions defined by a smooth function W. It has recently been argued there is a lower bound on the conserved energy in terms of the global minimum of W, if the scalar potential arises from a superpotential P and the scalar reaches an extremum of P at infinity. We show, however, there are superpotentials for which these bounds do not hold.Comment: 16 pages, 4 figures, v2: discussion of vacuum decay included, typos corrected, reference adde

    Particle Production near an AdS Crunch

    Full text link
    We numerically study the dual field theory evolution of five-dimensional asymptotically anti-de Sitter solutions of supergravity that develop cosmological singularities. The dual theory is an unstable deformation of the N = 4 gauge theory on R ×\times S3, and the big crunch singularity in the bulk occurs when a boundary scalar field runs to infinity. Consistent quantum evolution requires one imposes boundary conditions at infinity. Modeling these by a steep regularization of the scalar potential, we find that when an initially nearly homogeneous wavepacket rolls down the potential, most of the potential energy of the initial configuration is converted into gradient energy during the first oscillation of the field. This indicates there is no transition from a big crunch to a big bang in the bulk for dual boundary conditions of this kind.Comment: 20 pages, 6 figure

    Numerical simulation of a possible counterexample to cosmic censorship

    Full text link
    A numerical simulation is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz and Maeda to be a violation of cosmic censorship. That initial data is essentially a thick domain wall connecting two regions of anti-deSitter space. The initial data has a free parameter that is the initial size of the wall. The simulation shows no violation of cosmic censorship, but rather the formation of a small black hole. The simulation described here is for a moderate wall size and leaves open the possibility that cosmic censorship might be violated for larger walls.Comment: discussion clarifie

    Towards a Novel no-hair Theorem for Black Holes

    Get PDF
    We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general relativity, which rules out spherical scalar hair of static four dimensional black holes if the scalar field theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically has negative regions but where supersymmetry ensures the total energy is always positive. In theories where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry group.Comment: 25 pages, 11 figure

    Towards a Big Crunch Dual

    Full text link
    We show there exist smooth asymptotically anti-de Sitter initial data which evolve to a big crunch singularity in a low energy supergravity limit of string theory. This opens up the possibility of using the dual conformal field theory to obtain a fully quantum description of the cosmological singularity. A preliminary study of this dual theory suggests that the big crunch is an endpoint of evolution even in the full string theory. We also show that any theory with scalar solitons must have negative energy solutions. The results presented here clarify our earlier work on cosmic censorship violation in N=8 supergravity.Comment: 27 pages, 3 figures;v2:minor correction

    Stability in Designer Gravity

    Full text link
    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al.and find they differ from the spinor charges except when W=0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which WW has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this, by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed.Comment: 29 page

    Holographic Description of AdS Cosmologies

    Full text link
    To gain insight in the quantum nature of the big bang, we study the dual field theory description of asymptotically anti-de Sitter solutions of supergravity that have cosmological singularities. The dual theories do not appear to have a stable ground state. One regularization of the theory causes the cosmological singularities in the bulk to turn into giant black holes with scalar hair. We interpret these hairy black holes in the dual field theory and use them to compute a finite temperature effective potential. In our study of the field theory evolution, we find no evidence for a "bounce" from a big crunch to a big bang. Instead, it appears that the big bang is a rare fluctuation from a generic equilibrium quantum gravity state.Comment: 34 pages, 8 figures, v2: minor changes, references adde

    Hidden Convexity in Partially Separable Optimization

    Get PDF
    The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some partial separable structure. Among other things, the new hidden convexity results open up the possibility to solve multi-stage robust optimization problems using certain nonlinear decision rules.convex relaxation of nonconvex problems;hidden convexity;partially separable functions;robust optimization

    Is It Really Naked? On Cosmic Censorship in String Theory

    Full text link
    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the `no black hole' argument breaks.Comment: 8 pages, 5 figures, 1 table; REVTeX 4.
    • 

    corecore