42 research outputs found

    Personalized online information search and visualization

    Get PDF
    BACKGROUND: The rapid growth of online publications such as the Medline and other sources raises the questions how to get the relevant information efficiently. It is important, for a bench scientist, e.g., to monitor related publications constantly. It is also important, for a clinician, e.g., to access the patient records anywhere and anytime. Although time-consuming, this kind of searching procedure is usually similar and simple. Likely, it involves a search engine and a visualization interface. Different words or combination reflects different research topics. The objective of this study is to automate this tedious procedure by recording those words/terms in a database and online sources, and use the information for an automated search and retrieval. The retrieved information will be available anytime and anywhere through a secure web server. RESULTS: We developed such a database that stored searching terms, journals and et al., and implement a piece of software for searching the medical subject heading-indexed sources such as the Medline and other online sources automatically. The returned information were stored locally, as is, on a server and visible through a Web-based interface. The search was performed daily or otherwise scheduled and the users logon to the website anytime without typing any words. The system has potentials to retrieve similarly from non-medical subject heading-indexed literature or a privileged information source such as a clinical information system. The issues such as security, presentation and visualization of the retrieved information were thus addressed. One of the presentation issues such as wireless access was also experimented. A user survey showed that the personalized online searches saved time and increased and relevancy. Handheld devices could also be used to access the stored information but less satisfactory. CONCLUSION: The Web-searching software or similar system has potential to be an efficient tool for both bench scientists and clinicians for their daily information needs

    Effect of expression of adenine phosphoribosyltransferase on the in vivo anti-tumor activity of prodrugs activated by E. coli purine nucleoside phosphorylase

    Get PDF
    The use of E. coli purine nucleoside phosphorylase (PNP) to activate prodrugs has demonstrated excellent activity in the treatment of various human tumor xenografts in mice. E. coli PNP cleaves purine nucleoside analogs to generate toxic adenine analogs, which are activated by adenine phosphoribosyl transferase (APRT) to metabolites that inhibit RNA and protein synthesis. We created tumor cell lines that encode both E. coli PNP and excess levels of human APRT, and have used these new cell models to test the hypothesis that treatment of otherwise refractory human tumors could be enhanced by overexpression of APRT. In vivo studies with 6-methylpurine-2′-deoxyriboside (MeP-dR), 2-F-2′-deoxyadenosine (F-dAdo) or 9-β-D-arabinofuranosyl-2-fluoroadenine 5′-monophosphate (F-araAMP) indicated that increased APRT in human tumor cells coexpressing E. coli PNP did not enhance either the activation or the anti-tumor activity of any of the three prodrugs. Interestingly, expression of excess APRT in bystander cells improved the activity of MeP-dR, but diminished the activity of F-araAMP. In vitro studies indicated that increasing the expression of APRT in the cells did not significantly increase the activation of MeP. These results provide insight into the mechanism of bystander killing of the E. coli PNP strategy, and suggest ways to enhance the approach that are independent of APRT

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p

    Big data for bipolar disorder

    Get PDF
    corecore