1,960 research outputs found
Advanced Diagnostics for the Study of Linearly Polarized Emission. II: Application to Diffuse Interstellar Radio Synchrotron Emission
Diagnostics of polarized emission provide us with valuable information on the
Galactic magnetic field and the state of turbulence in the interstellar medium,
which cannot be obtained from synchrotron intensity alone. In Paper I (Herron
et al. 2017b), we derived polarization diagnostics that are rotationally and
translationally invariant in the - plane, similar to the polarization
gradient. In this paper, we apply these diagnostics to simulations of ideal
magnetohydrodynamic turbulence that have a range of sonic and Alfv\'enic Mach
numbers. We generate synthetic images of Stokes and for these
simulations, for the cases where the turbulence is illuminated from behind by
uniform polarized emission, and where the polarized emission originates from
within the turbulent volume. From these simulated images we calculate the
polarization diagnostics derived in Paper I, for different lines of sight
relative to the mean magnetic field, and for a range of frequencies. For all of
our simulations, we find that the polarization gradient is very similar to the
generalized polarization gradient, and that both trace spatial variations in
the magnetoionic medium for the case where emission originates within the
turbulent volume, provided that the medium is not supersonic. We propose a
method for distinguishing the cases of emission coming from behind or within a
turbulent, Faraday rotating medium, and a method to partly map the rotation
measure of the observed region. We also speculate on statistics of these
diagnostics that may allow us to constrain the physical properties of an
observed turbulent region.Comment: 34 pages, 25 figures, accepted for publication in Ap
Quantitative electroencephalography and behavioural correlates of daytime sleepiness in chronic stroke.
Sleepiness is common after stroke, but in contrast to its importance for rehabilitation, existing studies focus primarily on the acute state and often use subjective sleepiness measures only. We used quantitative electroencephalography (qEEG) to extract physiological sleepiness, as well as subjective reports, in response to motor-cognitive demand in stroke patients and controls. We hypothesised that (a) slowing of the EEG is chronically sustained after stroke; (b) increased power in lower frequencies and increased sleepiness are associated; and (c) sleepiness is modulated by motor-cognitive demand. QEEGs were recorded in 32 chronic stroke patients and 20 controls using a Karolinska Drowsiness Test protocol administered before and after a motor priming task. Subjective sleepiness was measured using the Karolinska Sleepiness Scale. The findings showed that power density was significantly increased in delta and theta frequency bands over both hemispheres in patients which were not associated with subjective sleepiness ratings. This effect was not observed in controls. The motor priming task induced differential hemispheric effects with greater increase in low-frequency bands and presumably compensatory increases in higher frequency bands. The results indicate sustained slowing in the qEEG in chronic stroke, but in contrast to healthy controls, these changes are not related to perceived sleepiness
Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program
Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing
Polarization Gradient Study of Interstellar Medium Turbulence Using The Canadian Galactic Plane Survey
We have investigated the magneto-ionic turbulence in the interstellar medium
through spatial gradients of the complex radio polarization vector in the
Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square-degrees,
over the range ,
with an extension to
in the range , and arcminute
resolution at 1420 MHz. Previous studies found a correlation between the
skewness and kurtosis of the polarization gradient and the Mach number of the
turbulence, or assumed this correlation to deduce the Mach number of an
observed turbulent region. We present polarization gradient images of the
entire CGPS dataset, and analyze the dependence of these images on angular
resolution. The polarization gradients are filamentary, and the length of these
filaments is largest towards the Galactic anti-center, and smallest towards the
inner Galaxy. This may imply that small-scale turbulence is stronger in the
inner Galaxy, or that we observe more distant features at low Galactic
longitudes. For every resolution studied, the skewness of the polarization
gradient is influenced by the edges of bright polarization gradient regions,
which are not related to the turbulence revealed by the polarization gradients.
We also find that the skewness of the polarization gradient is sensitive to the
size of the box used to calculate the skewness, but insensitive to Galactic
longitude, implying that the skewness only probes the number and magnitude of
the inhomogeneities within the box. We conclude that the skewness and kurtosis
of the polarization gradient are not ideal statistics for probing natural
magneto-ionic turbulence.Comment: 21 pages, 15 figures, accepted by Ap
Recommended from our members
Stratigraphy of the Palo Duro Basin- A Status Report
Since the beginning of Bureau research into the Palo Duro Basin area in 1979, more than 150 geologic reports have been completed and published. Approximately 30 are currently in press. Because of continuing research in the area, however, a great deal of additional work still remains unpublished. This report provides an update on ongoing, as yet unpublished research into the stratigraphy of the Palo Duro Basin (fig. 1).
Although investigations on some scale are being carried out on essentially all of the stratigraphic horizons in the Palo Duro Basin area (fig. 2), only those units which have recently been the focus of relatively concentrated research efforts are reported herein. This necessarily includes those units being analyzed for hydrocarbon potential (Mississippian and Pennsylvanian Systems), those that are the focus of hydrologic studies (Permian Wolfcamp Series and Permo-Triassic Dockum Group and Dewey Lake Formation), and the proposed waste repository horizon (Permian San Andres Formation). Work on other stratigraphic units is of lower priority and is being carried out peripherally. Table 1 indicates researchers responsible for contributions to this report and those who are continuing to study various stratigraphic units in the area.Bureau of Economic Geolog
Inactivation of Streptomyces phage ɸC31 by 405 nm light : requirement for exogenous photosensitizers?
Exposure to narrowband violet-blue light around 405 nm wavelength can induce lethal oxidative damage to bacteria and fungi, however effects on viruses are unknown. As photosensitive porphyrin molecules are involved in the microbicidal inactivation mechanism, and since porphyrins are absent in viruses, then any damaging effects of 405 nm light on viruses might appear unlikely. This study used the bacteriophage ɸC31, as a surrogate for non-enveloped double-stranded DNA viruses, to establish whether 405 nm light can induce virucidal effects. Exposure of ɸC31 suspended in minimal media, nutrient-rich media, and porphyrin solution, demonstrated differing sensitivity of the phage. Significant reductions in phage titre occurred when exposed in nutrient-rich media, with ~3, 5 and 7-log10 reductions achieved after exposure to doses of 0.3, 0.5 and 1.4 kJ/cm2, respectively. When suspended in minimal media a 0.3 log10 reduction (P=0.012) occurred after exposure to 306 J/cm2: much lower than the 2.7 and >2.5 log10 reductions achieved with the same dose in nutrient-rich, and porphyrin-supplemented media, suggesting inactivation is accelerated by the photo-activation of light-sensitive components in the media. This study provides the first evidence of the interaction of narrowband 405 nm light with viruses, and demonstrates that viral susceptibility to 405 nm light can be significantly enhanced by involvement of exogenous photosensitive components. The reduced susceptibility of viruses in minimal media, compared to that of other microorganisms, provides further evidence that the antimicrobial action of 405 nm light is predominantly due to the photo-excitation of endogenous photosensitive molecules such as porphyrins within susceptible microorganisms
Human Cardiomyocytes Prior to Birth by Integrationâ Free Reprogramming of Amniotic Fluid Cells
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135525/1/Supplemental_Information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135525/2/sct320165121595.pd
Bulk mineralogical characterisation of oilfield reservoir rocks and sandstones using DRIFTS and partial least squares analysis
The feasibility of applying Partial Least Squares (PLS) to the Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) spectra of mineral mixtures, quarry sandstones and oilfield reservoir rocks has been investigated and shown considerable potential for accurate and precise mineralogical analysis. Rapid spectrum acquisition and data processing together with small sample size requirements are key advantages of the PLS–DRIFTS method.
A PLS model was created from the DRIFTS spectra of mixtures of seven mineral standards chosen to represent the most frequently encountered minerals in sandstone-type rocks; quartz, dolomite, montmorillonite, illite, kaolinite, chlorite and albite. The PLS–DRIFTS model was able to quantify the mineral components of independent mixtures with an absolute error of 1 wt.% for all the minerals (concentration range 0–30 wt.%) with the exception of quartz which exhibited an absolute error of 3 wt.% (concentration range 50–90 wt.%). The results provided by applying this PLS–DRIFTS model to several sandstone-type quarry rocks and a suite of oilfield reservoir rocks were considerably better than anticipated even though the model did not describe all the mineral components present in the samples nor the entire variance of constituent mineral components (e.g. crystallinity). The model was not able to differentiate between montmorillonite and illite probably due to the similarity of the DRIFTS spectra of these minerals, but it was able to quantify the combined (montmorillonite + illite) concentrations to within 1 wt.%. The model over-predicted the concentration of albite in the quarry rocks due to the presence of K-feldspar, which has a similar DRIFTS spectrum and was not included in the model. However, the model accurately predicted the total (albite and K-feldspar) concentration to within 4 wt.%. A separate PLS–DRIFTS model constructed using the DRIFTS spectra of the oilfield reservoir rocks showed that the carbonate components, calcite and dolomite could be differentiated and quantified to within 5.0 and 3.6 wt.%, respectively. This feasibility study confirmed the strong potential of combining DRIFTS with a multivariate statistical approach such as PLS and it is clear that more sophisticated models, that incorporates and describes a higher percentage of the variance in unknowns, would further improve the predictions
OMNI: Open Mind Neuromodulation Interface for accelerated research and discovery
Electrical neuromodulation is an approved therapy for a number of neurologic disease states, including Parkinson's disease (PD), Obsessive Compulsive Disorder, Essential Tremor, epilepsy and neuropathic pain. Neuromodulatory strategies are also being piloted for an increasing number of additional indications, including Major Depressive Disorder, Dystonia, and addiction. The development of implantable devices capable of both neural sensing and adaptive stimulation may prove essential for both improving therapeutic outcomes and expanding the neuromodulation indication space. Nevertheless, an increasingly fragmented device ecosystem forces researchers and therapy developers to customize and reinvent data visualization, clinician engagement, and device control software to support individual clinical studies. Each hardware platform provides a unique software interface to the implanted neurostimulator, making pre-existing code from prior studies difficult to leverage for future work - a hindrance that will expand as device technology diversifies. Here, we envision, detail, and demonstrate the use of a novel software architecture, OMNI, that accelerates neuromodulation research by providing a flexible, platform- and device-agnostic interface for clinical research and therapy development
- …