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Abstract 

The feasibility of applying Partial Least Squares (PLS) to the Diffuse Reflectance 

Infrared Fourier Transform Spectroscopy (DRIFTS) spectra of mineral mixtures, quarry 

sandstones and oilfield reservoir rocks has been investigated and shown considerable 

potential for accurate and precise mineralogical analysis.  Rapid spectrum acquisition and 

data processing together with small sample size requirements are key advantages of the 

PLS-DRIFTS method.  

A PLS model was created from the DRIFTS spectra of mixtures of seven mineral 

standards chosen to represent the most frequently encountered minerals in sandstone-type 

rocks; quartz, dolomite, montmorillonite, illite, kaolinite, chlorite and albite.  The PLS-

DRIFTS model was able to quantify the mineral components of independent mixtures 

with an absolute error of 1 wt% for all the minerals (concentration range 0-30 wt%) with 

the exception of quartz which exhibited an absolute error of 3 wt% (concentration range 

50-90 wt%).  The results provided by applying this PLS-DRIFTS model to several 
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sandstone-type quarry rocks and a suite of oilfield reservoir rocks were considerably 

better than anticipated even though the model did not describe all the mineral 

components present in the samples nor the entire variance of constituent mineral 

components (e.g. crystallinity).  The model was not able to differentiate between 

montmorillonite and illite probably due to the similarity of the DRIFTS spectra of these 

minerals, but it was able to quantify the combined (montmorillonite + illite) 

concentrations to within 1 wt%.  The model over-predicted the concentration of albite in 

the quarry rocks due to the presence of K-feldspar, which has a similar DRIFTS spectrum 

and was not included in the model.  However, the model accurately predicted the total 

(albite and K-feldspar) concentration to within 4 wt%.  A separate PLS-DRIFTS model 

constructed using the DRIFTS spectra of the oilfield reservoir rocks showed that the 

carbonate components, calcite and dolomite could be differentiated and quantified to 

within 5.0 and 3.6 wt%, respectively.  This feasibility study confirmed the strong 

potential of combining DRIFTS with a multivariate statistical approach such as PLS and 

it is clear that more sophisticated models, that incorporates and describes a higher 

percentage of the variance in unknowns, would further improve the predictions.  

 

Keywords: 1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy 

(DRIFTS), 2) Partial Least Squares Analysis, 3) Mineralogical Characterisation, 4) 

Oilfield Reservoir Rocks, 5) Sandstones. 
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Introduction 

Knowledge of the mineralogical composition of oilfield reservoir rocks is important in 

optimising oil recovery. Such mineralogical data is useful in i) the initial exploration 

phase, ii) the construction of geological models and ensuing plans for development and 

production, and iii) the planning and execution of improved/enhanced oil recovery 

treatments.  For the latter, this is especially important when complex, multi-component 

treatment fluids are utilised to enhance production (Borling, 1994).  Many other industrial 

sectors are also interested in mineralogical analysis of sandstone rocks and include; 

construction, water, geophysics and ceramics.  Currently, bulk mineralogical analysis 

relies heavily on X-ray diffraction (XRD) which tends to be supported by data from 

infrared spectroscopy, chemical analysis and electron microscopy (Środoń, 2002).  

Indeed, the top three finalists in the Reynolds Cup, a contest which provides the 

contestants with a valuable opportunity to validate and improve their analytical 

techniques placed considerable emphasis on XRD for identification and quantification of 

the major minerals.  In contrast, cation exchange capacity measurements and 

thermogravimetric analysis were used only in a supplementary context (Osomoto et al., 

2006).  In addition the contest reinforced the view that successful quantification was 

more dependent on a particular analyst’s experience than on the analytical technique or 

software used.  Combining these techniques is time consuming and expensive with 

typical absolute errors of 3-5 wt%.  The relative errors involved with XRD have been 

expressed as a function of concentration by Hillier (2003) who showed that the relative 

error varied as a function of X
0.35

, where X = mineral concentration in wt% (i.e. the error 

at 30 wt% would be +/- 3.3% at 95% confidence).  For certain applications, only a few 
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milligrams of sample are available, e.g. for river suspended sediments, and so infrared 

spectroscopic techniques are attractive since XRD typically requires 1 g or more for 

analysis.  Of course, representative sampling also needs to be considered in any analysis.  

Herein, the feasibility of applying multivariate statistical models based on Partial Least 

Squares (PLS) analysis to infrared spectra obtained via Diffuse Reflectance Infrared 

Fourier Transform Spectroscopy (DRIFTS) is investigated in order to provide a rapid, 

more convenient and accurate quantification of the bulk mineralogy. 

DRIFTS is an increasingly popular and reliable infrared technique that has been used to 

characterise a variety of powdered samples including cements, soils, coals and minerals 

(for references see reviews by Mitchell, 1993 and Kelvy and Britt, 1996).  A 

comprehensive study, which highlights the principles and advantages involved in the 

technique whilst focussing on the distinction between bulk and surface mineralogy of 

sandstone-type rocks, has been detailed elsewhere (Clegg, 1998).  PLS is a multivariate 

statistical technique (Beebe and Kowalski, 1987; Geladi and Kowalski, 1986) that can be 

used to quantify analyte components in infrared spectra, whether they are expressed using 

the Beer-Lambert Law for absorbance or its Kubelka-Munk equivalent for diffuse 

reflectance.  This technique is particularly appropriate when analysing complex multiple-

component spectra, which contain many broad and overlapping bands.  In essence the 

PLS algorithm examines regions of the spectra to determine which areas vary as a 

function of component concentration (vide infra). 

Hughes et al. (1991) and Hughes and Jones (1992) initially applied several multivariate 

calibration techniques to infrared spectra of drilled cuttings/solids, obtained whilst 

drilling a borehole, to make mineralogical quantitative analysis.  Later Hughes et al. 
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(1995) applied PLS and DRIFTS to Portland cement and were able to describe up to 14 

components with adequate accuracy. Janik et al. (1995) applied the techniques to 

characterise soils and were able to predict not only the major element compositions 

(SiO2, Al2O3 and Fe2O3) but also soil properties such as pH, sum of cations present, and 

clay content as well as the carboxylic and amide species present (Janik and Skjemstand, 

1995).  In an earlier report, Janik and Keeling (1993) also combined PLS and DRIFTS 

for the successful analysis of tubular halloysite in kaolin samples, whilst Peussa et al. 

(2000) were able to rapidly determine, with sufficient accuracy, the hydroxyl group 

content in calcined silica thus removing the dependence on time consuming 

thermogravimetric analysis. 

A least square fitting technique was developed by Matteson and Herron (1993) and 

Herron et al. (1997) using FTIR transmission spectroscopy (herein defined as LS-Trans), 

which was reported to be accurate to 1 wt% for complicated artificial mineral mixtures.  

The latter method, which uses wavelet transform calculations to separate useful 

information from noise, was applied to an extensive collection of mineral standards that 

included feldspars with Ca, Na and K end members.  Another multivariate statistical 

technique, principal component analysis, has been able to correlate the fractal dimension 

of kaolinite with brightness, morphology and structural order enabling the calculation of 

technical properties for use in the paper industry (Aparicio et al., 2004).  Mineral analysis 

of multicomponent mineral mixtures not using least squares fitting methods, but relying 

on Beers Law, includes the work of Bertaux et al. (1998) who studied the quantification 

of amorphous and crystallized phases in synthetic and natural sediments.  An attempt to 

determine the composition of river suspended sediment using least squares analysis 
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(Hillier et al., 2000) provided accurate results when infrared spectroscopy or XRD was 

applied to simple 2-3 component mixtures.  However, XRD results were found to be 

superior to infrared spectroscopy when the mixtures were more complex.  Moreover the 

total carbonate concentration was accurately determined by XRD when mixtures of 

carbonate were present but the method was unable to accurately quantify individual 

carbonates.  Other infrared work by Środoń et al. (2002) encountered problems with the 

reproducibility of experimental conditions and concluded that i) there was not enough 

information to distinguish reliably between individual minerals in groups such as 

feldspars and carbonates; ii) it was not sensitive enough to quantify all of the mineral 

components with acceptable accuracy. 

The aim of this feasibility study is to develop a PLS model based on the DRIFTS spectra 

of mixtures of mineral standards (PLS-DRIFTS MM) and then use the model to 

determine the bulk mineralogy of several quarried sandstone rocks and a suite of oilfield 

reservoir rocks.  An independent analysis of the quarried sandstone rocks was obtained 

by XRD, whilst the least-squares analysis FTIR transmission method (LS-Trans), 

developed by Matteson and Herron, (1993) and Herron et al. (1993), was used as a 

comparison for data obtained using other FTIR techniques.  Independent analysis of the 

oilfield reservoir rocks was given by XRF elemental analysis (Chevron-Texaco, 1990).  

Another aim of the study was to develop a PLS model based on a selection of the 

DRIFTS spectra of the oil field reservoir rocks (PLS-DRIFTS-ORR).  This was applied 

to other DRIFTS spectra of oil field reservoir rocks in order to investigate the use of 

naturally occurring mineral mixtures.  Whereas both models concentrated on 

distinguishing the classes of minerals (e.g. smectites, carbonates, etc) found in oilfield 
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reservoir sandstones the PLS-DRIFTS-ORR model also investigated its ability to 

distinguish between dolomites and calcite. 

 

Experimental 

The seven mineral standards used to represent the major mineral components found in 

sandstones were used as received without further purification and are listed alongside 

their indicative structural formula and source in Table 1.  Twenty one mineral mixtures 

each containing selected amounts of the seven mineral components were used to create 

the PLS-DRIFTS MM model.  Twelve of the twenty-one mixtures were used in the 

calibration set, six in the validation set and the remaining three in the independent set.  

The weight percent ranges of the mineral components in the model are also given in 

Table 1.  Surface quarried sandstones, except Berea and Castlegate, were selected from 

‘The Building Sandstones of the British Isles Handbook’ (Leary, 1986) and are listed in 

Table 2.  Castlegate comes from the Southern Wasatch plateau, Utah, whereas Berea 

comes from the Amherst quarry, Ohio.  The suite of oilfield reservoir rocks were 

provided by Chevron-Texaco from twenty selected depths in the Lacy 12Y well of the 

Weber Sand Reservoir, Rangely Field, Colorado (Larson, 1974). 

Spectra were recorded on a Nicolet 5DX system FTIR spectrometer using a Collector
TM

 

DRIFTS accessory (SpectraTech) which had been modified so that the sample cup could 

be rotated during spectral collection.  Spectra collected from a rotating sample provides 

data with better reproducibility because it minimises sample-to-sample orientation 

differences (Christy et al., 1987).  All samples, including mineral mixtures and 

sandstones, were ball milled for 20 minutes prior to dispersing at 10 wt% in oven dried, 
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ball milled FTIR grade KBr (Aldrich).  The mixture was then packed into the sample cup 

using a small press (20 kg load for 1 minute), enabling highly reproducible spectra, which 

are critical to the successful quantification, to be collected.  Generally, the smaller the 

particle size the greater the reflectance and hence another reason for milling the samples.  

It has been shown that micro-absorption affects are related to particle size by Fuller and 

Griffiths (1978).  They showed that a drop in reflectance was observed below 1000 cm
-1

 

when the particle size was < 10 μm and was attributed to the wavelength of radiation 

being approximately equal to the diameter of the particles.  This has been debated in the 

literature, but no such observations were noted in the spectra collected for this paper.  

Sample spectra were ratioed against a background of KBr that had also been ball milled 

and oven dried.  The authors were alert to the potential amorphisation/destruction of the 

mineral components during milling (Illes, 2000, Breen et al., 2007).  Kaolin is a 

particularly good marker for such a phenomena (Breen et al., 2007) and none was 

detected.  Even if some restructuring had taken place the effects should be similar in all 

samples which were treated in an identical manner.  Some groups heat mineral samples in 

an attempt to distinguish between illite and smectite.  None of the samples studied here 

were heated prior to analysis i.e. the clays were in a hydrated state during the DRIFTS 

analysis.  The PLS-DRIFTS MM model incorporated data from the entire mid-infrared 

region (3900-450 cm
-1

) and spectra were analysed in absorbance more using ‘Turboquant 

Analyst
TM

’ PLS software, which is part of the OMNIC
TM

 software package (Version 1).  

Independent quantitative mineralogical analysis of the quarried sandstones was 

performed using the well documented quantitative X-ray powder diffraction technique as 

practised by Hillier, (2003 and 2000) and acknowledged by Osomoto et al., (2006).  XRD 
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was performed on both oriented clay fractions and whole rock random powders.  The 

minerals present were quantified using whole rock data.  The clay fraction analysis was 

performed to confirm and refine the identity of the clay minerals and to provide 

complementary quantitative information (Table 3).  Independent quantitative 

mineralogical analysis of the oilfield reservoir rocks was performed by X-ray 

fluorescence (XRF) (Chevron-Texaco (1990).  XRF data were obtained using both 

powdered and fused lithium borate flux samples and were interpreted in correlation with 

coulometric (CO2 and organic carbon content remaining after extraction with toluene), 

gravimetric (loss on ignition) and colorimetric (ferrous iron (FeO) in carbonates and 

silicates) analyses.  The elemental analyses were converted into mineral concentrations 

using equations based on the elemental ratios of pure minerals that are likely to be 

present.  The major assumption in these calculations is that none of the minerals contain 

any elemental impurities, which is not usually the case for natural minerals. 

 

Partial Least Squares Analysis 

In PLS analysis (Brereton, 2003, Beebe and Kowalski, 1987, Geladi and Kowalski, 1986) 

a regression model is established between a matrix A, containing absorbances at p 

wavenumbers for m samples and a matrix C, containing the concentration of each of the n 

components in the same m samples.  Prior to modelling, the matrices are divided into 

calibration, validation and independent sets.  A PLS model is created using the 

calibration set and then the matrices in the validation set are used to determine the 

optimum number of factors required to accurately predict the concentration of each 

analyte component.  A factor is defined as any linear combination of the original 
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variables, and factors can be defined using eigenvectors.  Eigenvectors are directions in 

space that describe the maximum amount of variation or spread in the samples.  The 

factors of matrix A are re-expressed in a matrix U, which is termed the score matrix.  

This matrix results from projecting A onto the eigenvector V, as RV=U.  The score 

matrix U is composed of the original data points in a new co-ordinate system described 

by the eigenvectors. 

The method of PLS is a modelling procedure that simultaneously estimates underlying 

factors in both A and C (a modelling procedure that only determines the factors in A is 

called principal component regression).  This is accomplished by using the columns of 

the C matrix to estimate the factors for the A matrix and at the same time the columns of 

matrix A are used to estimate the factors for matrix C.  The resulting models are:- 

A = TP + E 

C = UQ + F 

where the T and U are termed the score matrix of A and C, respectively, and P and Q are 

called the loadings.  The loadings are chosen to maximise the correlation between the 

scores and the analyte.  High laodings correspond to a high correlation whereas small 

loadings correspond to a low correlation.  The advantage of this approach is that if a 

column in the A matrix poorly describes the concentration of a component it can be given 

a low wighting.  The matrices E and F are the residual errors associated with modelling A 

and C using the PLS model. 

In the ideal situation, the sources of variation in A are exactly equal to the sources of 

variation in C and the factors for A and C are identical.  However, this is never the case 

and the factors for the A and C matrices have the following relationship 
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 U = bt + ε 

where b is termed the inner relationship between u and t and is used to calculate 

subsequent factors if more than one factor is necessary to describe the variation,  ε is the 

residue.  

In order to determine the optimum number of factors, the predicted error sum of squares 

(PRESS) is calculated.  PRESS is a cross validation technique used to determine the 

number of statistically significant factors.  It begins by determining the predictive ability 

of using only one factor on a set of validation samples.  The next step is to determine the 

predictive ability of the first and second factors.  As the optimum number of significant 

factors is approached, the prediction should improve and thus the PRESS should 

decrease.  However, when the optimum number of factors is exceeded the model begins 

to include noise, which results in a poor prediction of independent samples; effectively, 

the model becomes ‘over fitted’.  If the number of spectral factors is too low then all the 

variance in the data may not be represented, leading to poor prediction of independent 

samples.  Validation correlation coefficients are used to indicate the ability of the model 

to predict the concentration of the components.  An excellent value is 0.990 and the 

ability to predict is considered poor if the value is less than 0.975.  Independent samples 

that are accurately quantified give ultimate confirmation of the predictive ability of a 

given model. 

It should be noted that, occasionally, when unknown samples are analysed by the PLS-

DRIFTS MM model, negative mineral predictions can be obtained when the 

concentrations are low.  This is a problem encountered in all PLS models, and can either 
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be ignored or assigned as containing none of the specified component.  Herein, the 

negative concentrations are not modified in order to indicate when such a situation arises.  



 13 

Results and Discussion 

 

PLS-DRIFTS Model of Mineral Mixtures (PLS-DRIFTS MM) 

The ability of the model to successfully predict the concentration of each mineral 

standard in the validation and independent samples is represented in Figure 1 as plots of 

actual against predicted concentrations.  The figure reports the correlation coefficients for 

the validation samples and includes the number of factors used in parentheses.  Note that 

a correlation coefficient of unity represents a plot of the PLS-DRIFTS predicted versus 

actual concentrations on a straight line at 45º to the axes (dotted line; Figure 1).  The 

figure also contains the maximum and minimum weight percent differences for the 

independent (I) and validation (V) samples for each mineral mixture.  Thus taking the 

data for quartz as an example; four factors were used to obtain a correlation coefficient of 

0.986.  The filled diamonds represent the validation set and the maximum and minimum 

wt% deviations were -1.59 and +1.26.  Note that the open circles, which represent the 

independent set, show a greater scatter around the 45º line and this is reflected in the 

larger differences i.e. -2.07 < I >2.99.  A plot of the combined montmorillonite and illite 

concentrations is presented because the method produced relatively poor predictions for 

the individual components.  This was anticipated as the DRIFTS spectra of 

montmorillonite and illite are very similar (Figure 2), which in turn, is a result of their 

similar elemental compositions, structure and properties.  Ideally, the spectral 

information in each mineral spectrum should be unique.  Consequently, if the spectra of 

two or more components are similar then correlations between spectral and concentration 

information will be difficult to distinguish and quantitative results will not be accurate.  
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The least successful predictions were for albite as reflected in the scatter of data and 

lower correlation coefficient (0.986).  This result was anticipated as the DRIFTS 

spectrum for the feldspar, albite, contained fewer characteristic bands in spectral regions 

where bands arising from other minerals were absent (vide infra). 

The region of the DRIFTS spectrum that is given a higher weighting in the model (i.e. the 

region of the spectrum used to quantify the component) can be recognised by comparing 

the DRIFTS spectra of the mineral standards with their reconstructed spectra (Figures 2 

and 3).  Each reconstructed spectrum is composed of spectral information that correlates 

with the concentration information for a given component in all of the standards.  It is 

used to evaluate the spectral information that will be used to measure each component in 

a quantitative method.  The regions where good spectral similarities are observed are 

often the regions given higher weighting.  In an ideal situation the variance in the spectral 

data will be exactly equal to the variation in the concentration data and thus the 

reconstructed spectra will be identical to that collected experimentally.  However, this is 

never the case and discrepancies do arise.  These can be due to poorly characteristic 

spectral regions (i.e. overlapping bands) and the irreproducible errors within the DRIFTS 

technique itself that emerge as mismatches in the spectra.  The DRIFTS spectrum and the 

reconstructed spectrum of quartz were very similar (Figure 3), particularly in the 

overtone/combination region (2000-1500 cm
-1

).  The positions and ratios of all the bands 

in the reconstructed and DRIFTS spectra of dolomite were also very similar, which is a 

reflection of the excellent predictive ability of the model in determining the concentration 

of dolomite.  It is considered that the overtone bands between 3000-2500 cm
-1

, which are 

in an area of the spectrum free of bands due to other minerals are important contributors 
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to the excellent prediction of dolomite. This emphasises a key advantage of DRIFTS 

compared to transmission FTIR spectroscopy because these overtone bands are very 

weak, if not absent, in transmission FTIR spectra.  Similarities between the DRIFTS and 

reconstructed spectra of albite occurred mainly below 1400 cm
-1

.  Even though the 

predictive ability of the model to determine albite was relatively low it was still possible 

to correlate the four highly characteristic bands of albite, which are highlighted in the 

expanded portions of Figure 3.  This is of particular interest because it demonstrates the 

powerful capability of PLS, and other least square analysis techniques, as identification 

tools. The DRIFTS spectra of montmorillonite and illite and their combined reconstructed 

spectrum (Figure 2) displayed similarities, particularly the O-H stretching bands at 3620 

and 3380 cm
-1

.  The similarities observed between the actual and reconstructed spectra of 

kaolinite were good, although it had been anticipated that the ratio of the four diagnostic 

OH-stretching bands between 3620 and 3695 cm
-1

 would be more comparable.  However, 

there were observed differences that could be due to the contribution of bands from other 

clay minerals in the same region.  It was also suspected that the ball milling used during 

the sample preparation may result in the distortion of these bands.  Indeed, this can be the 

case as shown when ball milling pure kaolinite (Illes, 2000. Breen et al., 2007) yet the 

bands in the spectra of the samples containing kaolinite do not show evidence of 

distortion.  This is probably due to the fact the kaolinite is ball milled in the presence of 

other minerals, hence reducing the severity of the impact it experiences.  The bands at 

3695 and 917 cm
-1

 are therefore the most likely features to be used in the prediction of 

kaolinite.  Absorption bands at 3534 and 3420 cm
-1

 were observed in both the DRIFTS 

spectrum of chlorite and its reconstructed spectrum.  The presence of the band at 1450 
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cm
-1

 in the reconstructed spectra of illite and kaolinite suggests there is a correlation 

between the spectral information and their concentration.  However, this is not the case as 

no bands are present in this particular region of their spectra.  The fact that the band is in 

the same position as the most intense peak of the carbonate suggests contamination, but 

strict cleaning procedures were employed between the milling of different samples.  In 

addition, no correlation was evident between carbonate and kaolinite or illite 

concentrations.  A possible reason for this band could be due to a deconvolution problem 

within the algorithm at this particular wavelength, but this has not been confirmed.   

 

Application of PLS-DRIFTS MM model to quarried sandstone rocks. 

To test the predictive capability of the PLS-DRIFTS MM model it was applied to a suite 

of quarried sandstone rocks even though the variance in their spectra due to the presence 

of additional minerals and varying crystallinity within mineral types were not accounted 

for in the model.  The PLS-DRIFTS predictions were then compared with results 

obtained using XRD and the least-squares analysis FTIR transmission method (LS-

Trans).  It is essential that independent analytical techniques are used to compare PLS 

results and this requirement is achieved by the inclusion of XRD results.  The analysis 

from LS-Trans, which the authors recognise does not qualify as an independent analytical 

technique is included to illustrate the range of predicted concentrations that are present in 

the literature.  It should be noted that the distribution of minerals within the quarry rock 

samples is not uniform and thus sampling issues may account for variations in predictions 

between each technique.  Samples used for the XRD and PLS-DRIFTS MM analyses 

were collected from different areas within the same core, but different cores had been 
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used for LS-Trans analysis because they were analysed some time ago.  The mineral 

distribution in Hollington Red is particularly non-uniform because it is a banded rock, i.e. 

there are clay rich strata present.  Difficulties in obtaining samples specifically from the 

clay band (CB) and from between clay bands (BB) resulted in the samples analysed by 

PLS-DRIFTS being biased towards the different regions.  The mineral predictions for 

Hollington Red using XRD are from a single, amalgamated sample made of portions 

from the clay band and between bands, which explains why the results are identical in 

Figure 4.  The quarry rocks Castlegate, Clashach and Berea were not analysed using the 

LS-Trans method, but the bulk mineralogy of Berea has been determined using XRD by 

Azari and Leimkuhler (1990).  The differences between the XRD results of Azari and 

Leimkuhler (1990) and those from the current study are likely to arise from variances in 

the mineral components within each sample analysed, although the different sample 

preparation techniques used in each XRD method may also contribute.  For example, a 

preferred orientation method was used in this contribution, but this cannot be confirmed 

in the analysis by Azari and Leimkuhler (1990).  Note that XRD traces of Hollington 

Red, Yorkstone and Stancliffe show the most variability when samples from different 

areas within the core are analysed (Geddes, 2006). 

Moreover, the XRD analysis herein does not detect the presence of montmorillonite in 

the quarry rocks, but rather only mixtures of illite and mixed-layer clays.  This contrasts 

with that determined by the LS-Trans technique, which does identify the presence of 

montmorillonite.  For simplicity, the PLS-DRIFTS MM model has therefore been used to 

quantify the presence of dioctahedral 2:1 clays, which includes montmorillonite, illite and 

mixed-layer clays.   
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Overall, the results shown in Figure 4 demonstrate that the application of PLS to the 

DRIFTS spectra of sandstones is a viable technique for mineral analysis.  Figure 4 

presents the predicted mineral concentrations obtained using the different techniques. 

The prediction of quartz concentrations for Berea, Birchover, Yorkstone and Castlegate 

using the PLS-DRIFTS MM model were close to those obtained using XRD (i.e. the 

actual differences were; -1.5, +2.0, -0.2 and -0.6 wt%, respectively), although they were 

slightly higher for Stancliffe and Clashach (+7.0 and +6.8 wt%, respectively).  The 

predictions for Hollington Red were similar, despite the marked heterogeneity of the 

mineral distribution.  With the exception of Berea, the concentrations of albite were 

clearly over-predicted by the PLS-DRIFTS MM model when compared with the values 

from XRD and LS-Trans.  However, a comparison of the results for the total feldspar 

concentrations, which is the sum of albite and K-feldspar, clearly demonstrated that the 

latter was contributing to the prediction and that the PLS-DRIFTS MM model was 

actually quantifying the total feldspar concentration.  This was not entirely unexpected 

given that the PLS-DRIFTS MM model did not include a calibration for K-feldspar, 

which exhibits a very similar DRIFTS spectrum to albite.  It was noticed that XRD 

predicted a higher concentration of K-feldspar than LS-Trans, whereas LS-Trans 

predicted a higher concentration of albite than XRD; however, the total feldspar 

predictions are the same by both techniques.  The reason for this is currently uncertain, 

and requires further scrutiny. 

Due to the scale of the graph, the predictions of dolomite by the PLS-DRIFTS MM 

model appear to be erratic but are in fact accurate to within 1.8 wt%.  The LS-trans 

technique detected carbonate and the authors stated that the amount of dolomite in 
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Birchover and Stancliffe was less than 1 wt%, which is represented in Figure 4 by the 

vertical dashed arrows.  The concentrations of dolomite predicted by the PLS-DRIFTS 

MM model were generally higher than those obtained by XRD and LS-Trans, which may 

be because Berea, York Stone and Hollington Red contain small amounts of other 

carbonates.  The carbonates were identified, by LS-trans, as 1 wt% calcite and 1 wt% 

siderite in Berea and less than 1 wt% calcite and magnesite in York Stone and Hollington 

Red, respectively.  Calcite, siderite and magnesite exhibit infrared bands in similar  

spectral regions to those of dolomite and even though they were not included in the 

model, they may have contributed to the results.  Thermogravimetry-mass spectroscopy 

(TG-MS) has shown that carbon dioxide evolved from the quarry rocks on heating.  This 

probably suggests that carbonates are present at low levels, given that the absence of C-H 

stretching bands in the DRIFTS spectra negates the possibility of contamination with 

organic carbon.  These qualitative TG-MS results suggest that Stancliffe, Berea and 

Castlegate produce the largest amounts of carbon dioxide; a result which is in agreement 

with the PLS-DRIFTS results.  The XRD technique did not detect any carbonates in any 

of the samples suggesting that infrared spectroscopy may be a useful technique for the 

analysis of trace carbonates.  XRD may have failed to detect the presence of any 

carbonate if it was poorly crystalline. 

The concentrations of kaolinite predicted by the three techniques did show some variation 

and those obtained from the PLS-DRIFTS MM model were generally lower except for 

the clay band in Hollington Red.  This may reflect the variation in clay mineral 

distributions within the quarry rocks.  The prediction of dioctahedral 2:1 clay 

concentrations from the three techniques also varied, but a pattern was evident in that the 
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amount predicted was generally less using XRD than DRIFTS-PLS.  The predicted 

concentrations of chlorite from the three techniques were generally in good agreement, 

although the PLS-DRIFTS MM model presented higher values for York Stone and 

Stancliffe. 

Interestingly, if the sum of the individual clay concentrations (kaolinite + dioctahedral 

2:1 clay + chlorite) of each sandstone for all the techniques are plotted (Figure 5), the 

results are very comparable, with the exception of Berea and Hollington Red.  This is 

particularly notable for Stancliffe, which showed relatively higher deviations in the 

individual clay mineral predictions and thus supports the contention that PLS-DRIFTS 

could be a practical and robust approach for predicting total clay concentrations. 

The precision of the PLS-DRIFTS MM model (Table 4) was derived by quantifying each 

mineral component from 3 or 4 spectra of Birchover, Berea and Castlegate.  The spectra 

were collected from different aliquots of the same ball milled sample.  Each aliquot was 

prepared individually as pressed KBr mixtures.  Most of the results spread over a small 

range near 1 wt%, with the exception of the albite concentrations in Birchover and 

Castlegate, which spread over 3.9 and 3.7 wt%, respectively.  The spread of the results is 

very narrow, and reflects the excellent ability of the DRIFTS technique to generate 

spectra that are highly reproducible.  The reproducibility of the infrared bands at 3695 

and 1033 cm
-1

 in duplicate DRIFTS spectra of kaolinite varied by 0.04 and 0.033 

absorbance units, which represents a relative difference of 3.9 and 2.4%, respectively.  

These values are typical of most infrared bands in the DRIFTS spectra but occasionally 

higher relative differences were observed; for example, the infrared band at 3695 cm
-1

, in 

duplicate DRIFTS spectra of Berea sandstone varied by 6.3%. 
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PLS-DRIFTS MM model applied to oilfield reservoir rocks 

Before examining these predictions it is important to note that the mineral types used to 

describe the suite of oilfield reservoir rocks, as determined by the independent technique, 

XRF analysis, did not exactly match those used in the PLS-DRIFTS model of the 

mixtures of mineral standards (Table 5).  In essence the clay minerals were quantified as 

one component (i.e. total clay concentration) within the XRF analysis, whereas they were 

predicted individually in the PLS-DRIFTS model of mineral standards.  In addition, two 

types of carbonates (dolomite and calcite) and two types of feldspars (albite and K-

feldspar) were quantified as individual components within the XRF analysis, whereas 

only one carbonate (dolomite) and one feldspar (albite) were used in the PLS-DRIFTS 

model of mineral standards.  These differences, in theory, do not allow the PLS-DRIFTS 

MM model to quantify calcite or K-feldspar since they were not included in the 

calibration model.  However, the clay content in the oilfield reservoir rocks can be 

determined by addition of the predictions for the individual components. 

Accepting that there are likely to be differences in crystallinity between the minerals in 

the standards and the oilfield reservoir rocks, the PLS-DRIFTS predictions (Figure 6) of 

quartz, clay, dolomite and albite in the various oilfield reservoir rocks generally compare 

well with the XRF predictions. Moreover, the transformation of the XRF elemental 

analyses to mineral concentrations relies on major assumptions and is likely to be less 

accurate than direct methods. Consequently, although the PLS-DRIFTS model 

occasionally under or over predicts the mineral quantities the patterns are similar to those 

predicted by XRF and most importantly reports the same trends.   
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Figure 6 shows a comparison of the mineral concentrations in a suite of rock samples 

,from an oil well, obtained by PLS-DRIFTS and XRF.  As expected from the PLS-

DRIFTS MM model, the predictions of quartz and dolomite are very good.  The trend 

between the quartz concentrations predicted by PLS-DRIFTS MM and those derived 

from elemental analysis is clearly evident demonstrating that the model is robust to 

samples from different environments, i.e. from quarries and oilfield reservoirs. 

The ability of the PLS-DRIFTS MM model to predict the dolomite concentration was 

very good at depths above 6350 ft clearly defining the thin carbonate layer at 6081 ft and 

the thin carbonate streak at 6149 ft.  However, it tended to over-predict at greater depths 

and this was attributed to the presence of calcite in the reservoir rocks at these depths.  

Calcite has a similar DRIFTS spectrum to that of dolomite, in that analogous bands for 

dolomite are shifted to slightly higher wavenumbers (Figure 8).  Therefore, as the PLS-

DRIFTS MM model did not contain calcite in the calibration set it was unable to 

differentiate between calcite and dolomite.  This led to an erroneous increase in the 

predicted concentration of dolomite and hence highlights the sensitivity of the technique 

when all the variables in the model are not described.  It is expected that a PLS-DRIFTS 

model containing both calcite and dolomite concentration data would be able to provide 

improved predictions, which was strongly supported in the PLS-DRIFTS model derived 

directly from the oilfield reservoir rocks (vide infra). 

Occasionally the clay content, which was obtained by adding the predictions of kaolinite, 

chlorite, montmorillonite and illite, was over predicted but a comparable trend was 

observed between the actual and predicted concentrations.  Interestingly, the main 

contribution to the predicted clay content was from montmorillonite and illite, whereas 
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little, if any, was from kaolinite and chlorite.  Indeed the DRIFTS spectra of the oilfield 

reservoir rocks do contain bands indicative of illite and montmorillonite, but not of 

kaolinite or chlorite. 

The extent to which the PLS-DRIFTS MM model over predicts the albite concentration 

paralleled the observation from the quarry rocks and demonstrated that it was actually 

predicting the combined albite and K-feldspar concentration.  This was expected as their 

DRIFTS spectra are very similar and the variance had not been accounted for in the 

model.  Given that the DRIFTS spectra of feldspars do not contain many bands in unique 

positions of the spectrum where bands from other minerals are not present the predictions 

are much better than anticipated. 

It is very important to realise that although there are some differences between the XRF 

and PLS-DRIFTS results, the same geological information can be gleaned from the data.  

Such data include i) the presence of a shale bed at the lowest depth, ii) carbonate streaks 

at 6081 and 6149 ft, iii) clay rich sandstone beds between 5956 and 6027 ft, and iv) thick 

sandstone formation below 6158 ft.  Combined with the speed at which the DRIFTS data 

can be collected the reality of using such a technique for not only oilfield, but also other 

geological applications and general mineralogical characterisation is easily envisaged.  

Once again it should be stressed that a more detailed calibration can be developed and 

would increase the predictive ability of the model. 
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PLS-DRIFTS model of oilfield reservoir rocks (PLS-DRIFTS ORR) 

A PLS model from the DRIFTS spectra recorded from the oilfield reservoir rocks (PLS-

DRIFTS ORR) was primarily constructed in order to determine whether a data set 

containing naturally varying mineral crystallinity within a mineral group (e.g. quartz, 

dolomite) would affect its ability to predict the concentration of samples of a similar 

nature.  It should be noted that because natural rocks were used i) the spread of mineral 

concentrations within the calibration set did not cover the optimum ranges, ii) many of 

the samples used as calibration standards did not contain any of the mineral components 

to be quantified, which may result in a poorly predicting model, iii) there was a weak 

inverse relationship between calcite and dolomite content and iv) a strong co-linearity 

was present between the quartz and total carbonate concentrations.  Despite these 

potential limitations the results presented in Figure 7, which display the data in the same 

format as Figure 1), are very promising and highlight issues that require further 

development.  Twenty oilfield reservoir rock samples used to create the PLS-DRIFTS 

ORR model.  Twelve of these samples were used in the calibration set, another five for 

the validation set and the remaining three for the independent set.  The justification for 

building this model was that in a scenario where a large range of samples needed to be 

assessed, a rapid assessment could be readily obtained which could be validated by full 

mineralogical analysis performed on a selection of samples by XRD or XRF. 

The results show that the model is able to distinguish between calcite and dolomite even 

though their DRIFTS spectra are very similar.  This is apparent in their reconstructed 

spectra (Figure 8), which show the subtle band position and intensity differences, that 
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enable the unique characterisation of these carbonates, match those of the mineral 

standards.  This is particularly notable for the fundamental bands at 886 and 879 cm
-1

 and 

the overtone bands at 2534 and 2512 cm
-1

 for dolomite and calcite, respectively.  The 

PLS-DRIFTS ORR model was able to predict the total carbonate concentrations of the 

validation and independent samples relatively accurately when calcite and dolomite were 

combined to represent one component (i.e. total carbonate in Figure 7). 

The ability of the model to predict the clay mineral concentration was reasonable despite 

the low validation correlation coefficients.  Moreover, the model was able to distinguish 

that the dominant clay species in the oilfield reservoir rocks was either illite and/or 

montmorillonite.  A comparison of the spectra of the mineral standards with that of the 

reconstructed spectrum of clay (Figure 8) shows that a good correlation was obtained for 

the O-H stretching band at 3630 cm
-1

 and the Si-O stretching bands at 1024 cm
-1

.  This 

latter result was somewhat unexpected because of the proximity of the Si-O bands in the 

clays with those of quartz. 

The ability of the PLS-DRIFTS ORR model to predict quartz was poorer than anticipated 

and was possibly due to the co-linearity in concentration between quartz and total 

carbonate concentration.  Support for this was shown by the reconstructed spectrum of 

quartz, which exhibits negative bands in the same position as those from the carbonate 

minerals (not illustrated).  The ability of the PLS-DRIFTS ORR model to predict albite or 

K-Feldspar concentration was relatively poor, but the model did show evidence that it 

could distinguish between the two minerals in that the concentrations of albite were not 

over-predicted due to the higher concentrations of K-Feldspar and vice versa.  Finally, it 
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was still possible to reasonably predict the total Feldspar content when combining albite 

and K-Feldspar to represent one component. 

The uncertainty in the compositions derived from XRF analysis may explain why the 

clay and feldspar predictions from the PLS-DRIFTS ORR model are poor.  It is possible 

that the XRF results are not accurate and therefore the PLS-DRIFTS ORR model, which 

is dependant on precise calibration, is subsequently flawed.  Moreover, the predictions 

for clay and feldspars in the oilfield reservoir rocks using XRF analysis could be less 

accurate than the PLS-DRIFTS MM method because in part the former relies on indirect 

analysis based on assumptions, whilst the latter relies on a direct analysis.  Evidence to 

support this includes the fact the predictions of clay and albite in the oilfield reservoir 

rocks from the PLS-DRIFTS MM, relative to the XRF measurements, were poor yet were 

good in the quarry sandstones.  This may suggest that there is more clay in the oilfield 

reservoir rocks than is predicted by the XRF analysis. 

 

Conclusions 

This study demonstrates the high potential of successfully quantifying the mineral 

components in a sandstone-type rock by applying PLS analysis to their DRIFTS spectra.  

Moreover, the speed of spectral acquisition and data processing together with the small 

sample size requirements makes for a desirable analytical technique. Quantification of the 

mineral components albite, calcite, kaolinite, chlorite, montmorillonite and illite in 

mineral mixtures was achievable within 1 wt% accuracy, whereas quartz was within 3 

wt%.  Application of a PLS model constructed from the DRIFTS spectra of mixtures of 

mineral standards to quarry rocks and oilfield reservoir rocks generated accurate 
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predictive models, although the full mineral content and crystallinity variance in the 

rocks was not described.  In addition a basic PLS-DRIFTS model constructed from 

oilfield reservoir rocks showed that calcite and dolomite could be distinguished with 

adequate accuracy even though their DRIFTS spectra are only subtly different.  

Moreover, as with all analyses the potential to improve quantification could be achieved 

by extending the model to include larger numbers of standards and real samples with data 

that covers all the expected variance in the rocks. 
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Captions for Tables 

Table 1: Mineral Standards used to describe the typical mineral components found in 

sandstone-type rocks. 

Table 2: Sandstone-type quarry rocks 

Table 3: XRD results of quarry sandstones. 

Table 4: Precision of PLS-DRIFTS model of mineral mixtures. 

Table 5: Mineral types used to describe the components in oilfield reservoir rocks and the 

PLS-DRIFTS model of mineral standards. 
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Table 1: 

Mineral and Source Typical Structural 

Formula 

Weight % ranges for PLS-

DRIFTS MM Model 

Quartz (Chelford Sand) SiO2 50-90 

Na-Feldspar – Albite 

(BCS No. 375) 

NaAlSi3O8 0-17 

Montmorillonite (SWy-2)* [Al,Mg,Fe)2(OH)2Si4O10 

(Ca,Mg,Na,K)]nH2O 

0-10 

Kaolinite (KGa-2)* Al4Si4O10(OH)8 0-10 

Silver Hills Illite * Al4Si4O10(OH)2.K,Al 0-10 

Chlorite (CCa-2)* (Mg, Fe, Al)6 

(Al,Si)4O10(OH)8 

0-10 

Carbonate – Dolomite 

(BCS No. 368) 

CaCO3.MgCO3 0-30 

BCS = British Chemical Standards, *Clay Minerals Society – Source Clay Repository 
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Table 2: 

Quarry Rock Source  Colour Grain Size 

Birchover  Matlock, Derbyshire Pink to Buff Medium to 

Course 

Clashach Hopeman, Moray Firth Coast Buff to Fawn Fine 

Hollington Red Hollington, Staffordshire Dull Red Fine to Medium 

Stancliffe Chesterfield, Derbyshire Buff Fine 

York Stone West Yorkshire Buff Fine 

Castlegate Southern Wasatch plateau, Utah Buff Fine to Medium 

Berea Amherst, Ohio Buff to Fawn Fine to Medium 
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Table 3: 
Quarry Rock Mineral Concentration (wt%) 

Quartz Albite K-

Feldspar 

Kaolin Dioctahedral 

2:1 clay 

Chlorite Carbonate Hematite Total 

Birchover 76.3 5.1 10.4 4.7 2.6    99.1 

Berea 88.5 0.8 6.7 3.9 1 Trace   100.9 

Stancliffe 72.4 7.3 11.5 4.4 2.9    98.5 

Hollington 

Red 

76.4  14.2 2.1 5.4   1.1 99.2 

York Stone 72.2 10.2 6 4.3 4.3 3.4 0.2 (calcite)  100.6 

Castlegate 91.2  4.6 2.4 3.4    101.6 

Clashach 88.3  11.4 trace 1.6    101.3 
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Table 4: 
Mineral Concentration - wt% 

(Figures in parenthesises denote the highest and lowest difference from the average) 

Quartz M & I Kaolinite Chlorite Dolomite Albite 

Birchover - average of 4 

78.69 

(+0.57/-0.4) 
7.07 

(+0.71/-0.31) 
2.63 

(+0.43/-0.38) 
0.62 

(+1.88/-0.59) 
-0.12 

(+0.59/-0.4) 
20.39 

(+1.87/-2.06) 

Castlegate - average of 3 

91.06 

(+1.18/-0.72) 
5.91 

(+0.57/-0.67) 
0.55 

(+1.48/-1.49) 
-0.49 

(+0.22/-0.27) 
1.74 

(+0.47/-0.5) 
3.12 

(+1.61/-2.07) 

Berea - average of 3 

88.10 

(+1.13/-1.11) 
5.57 

(+0.47/-0.35) 
2.73 

(+0.71/-0.77) 
-0.98 

(+0.41/-0.58) 
2.74 

(+0.52/-0.57) 
3.54 

(+0.39/-0.66) 
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Table 5: 

PLS MM Oilfield rocks 

Quartz Quartz 

Montmorillonite and Illite, Kaolinite, 

Chlorite. 

Total Clay (including montmorillonite and 

illite, kaolinite, chlorite). 

Albite  K-Feldspar, Albite 

Dolomite Dolomite, Calcite 
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Captions for Figures 
 

Figure 1: Plot of actual against PLS-predicted concentrations (wt%) for the validation (♦) 

and independent (○) samples using the PLS-DRIFTS model of mineral standards.  

Calibration correlation coefficients and optimum number of factors used (in parentheses) 

are displayed together with the maximum and minimum weight differences for validation 

(V) and independent (I) samples.  Thus, for quartz four factors were used to give a 

correlation coefficient of 0.986 and the weight differences for the validation set varied 

from -1.59 wt% and 1.26 wt%.  A dashed line is shown at 45° to aid visualisation of 

accuracy. 

Figure 2: DRIFTS and reconstructed (PC) spectra of clay minerals derived from the PLS-

DRIFTS model of mineral mixtures. 

Figure 3: DRIFTS and reconstructed (PC) spectra of quartz, dolomite and feldspar 

derived from the PLS-DRIFTS model of mineral mixtures. 

Figure 4: Comparison of PLS-DRIFTS predicted mineralogy in quarry rocks, with those 

measured by XRD, LS-Trans and XRD by Hillier (co-author) or Azari and Leimkuhler 

(1990). 

Figure 5: Sum of individual clay concentrations predicted using PLS-DRIFTS MM for 

each sandstone compared with XRD and Least Squares - FTIR transmission data. 

Figure 6: Comparison of predicted PLS-DRIFTS MM model versus predicted XRF 

mineral concentrations of oilfield reservoir rocks 

Figure 7: Plot of XRF results against predicted concentrations for the validation (♦) and 

independent (○) samples using the PLS-DRIFTS model of oilfield reservoir rocks.  

Calibration correlation coefficients and optimum number of factors (in parentheses) used 
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are displayed and also maximum and minimum weight differences for validation (V) and 

independent (I) samples. 

Figure 8: DRIFTS and reconstructed (PC) spectra of calcite, dolomite, montmorillonite 

and illite derived from the PLS-DRIFTS model of oilfield reservoir rocks. 
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Figure 1 
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Figure 2: 
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Figure 3: 
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Figure 5:. 
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Figure 6: 

 

40

50

60

70

80

90

100

5880 5980 6080 6180 6280 6380 6480 6580

Depth (ft)

w
t%

XRF [Quartz] PLS [Quartz]

 

0

10

20

30

40

50

60

70

5880 5980 6080 6180 6280 6380 6480 6580

Depth (ft)

w
t%

XRF [Calcite] XRF [Dolomite] PLS [Dolomite]

0

5

10

15

20

25

30

35

40

45

5880 5980 6080 6180 6280 6380 6480 6580

Depth (ft)

w
t%

XRF [Clay] PLS [Clay] 

 

0

5

10

15

20

25

30

5880 5980 6080 6180 6280 6380 6480 6580

Depth (ft)

w
t%

XRF [K-Feldspar] XRF [Albite] PLS [Albite]

 



 47 

Figure 7: 
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Figure 8: 
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