16,605 research outputs found

    SUSY-QCD Corrections to Dark Matter Annihilation in the Higgs Funnel

    Full text link
    We compute the full O(alpha_s) SUSY-QCD corrections to dark matter annihilation in the Higgs-funnel, resumming potentially large mu tan beta and A_b contributions and keeping all finite O(m_b,s,1/tan^2 beta) terms. We demonstrate numerically that these corrections strongly influence the extraction of SUSY mass parameters from cosmological data and must therefore be included in common analysis tools such as DarkSUSY or micrOMEGAs.Comment: 4 pages, 3 (partly color) figures, version to be published in PR

    Flavour Violation in Gauge-Mediated Supersymmetry Breaking Models: Experimental Constraints and Phenomenology at the LHC

    Get PDF
    We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.Comment: 29 pages, 1 table, 27 figures. Minor changes. Version published in Nucl. Phys.

    Squark and Gaugino Hadroproduction and Decays in Non-Minimal Flavour Violating Supersymmetry

    Get PDF
    We present an extensive analysis of squark and gaugino hadroproduction and decays in non-minimal flavour violating supersymmetry. We employ the so-called super-CKM basis to define the possible misalignment of quark and squark rotations, and we use generalized (possibly complex) charges to define the mutual couplings of (s)quarks and gauge bosons/gauginos. The cross sections for all squark-(anti-)squark/gaugino pair and squark-gaugino associated production processes as well as their decay widths are then given in compact analytic form. For four different constrained supersymmetry breaking models with non-minimal flavour violation in the second/third generation squark sector only, we establish the parameter space regions allowed/favoured by low-energy, electroweak precision, and cosmological constraints and display the chirality and flavour decomposition of all up- and down-type squark mass eigenstates. Finally, we compute numerically the dependence of a representative sample of production cross sections at the LHC on the off-diagonal mass matrix elements in the experimentally allowed/favoured ranges.Comment: 35 pages, 29 (partly colour) figures. Some typos corrected, wording of several paragraphs improved, version accepted by Nucl. Phys.

    Statistical Laws and Mechanics of Voronoi Random Lattices

    Full text link
    We investigate random lattices where the connectivities are determined by the Voronoi construction, while the location of the points are the dynamic degrees of freedom. The Voronoi random lattices with an associated energy are immersed in a heat bath and investigated using a Monte Carlo simulation algorithm. In thermodynamic equilibrium we measure coordination number distributions and test the Aboav-Weaire and Lewis laws.Comment: 14 pages (figures not included), LaTeX, HLRZ-26/9

    SUSY-QCD corrections to stop annihilation into electroweak final states including Coulomb enhancement effects

    Get PDF
    We present the full O(αs)\mathcal{O}(\alpha_s) supersymmetric QCD corrections for stop-anti-stop annihilation into electroweak final states within the Minimal Supersymmetric Standard Model (MSSM). We also incorporate Coulomb corrections due to gluon exchange between the incoming stops. Numerical results for the annihilation cross sections and the predicted neutralino relic density are presented. We show that the impact of the radiative corrections on the cosmologically preferred region of the parameter space can become larger than the current experimental uncertainty, shifting the relic bands within the considered regions of the parameter space by up to a few tens of GeV.Comment: 20 pages, 13 figures, updated to version published in Phys. Rev.

    Discrete Fracture Model with Anisotropic Load Sharing

    Full text link
    A two-dimensional fracture model where the interaction among elements is modeled by an anisotropic stress-transfer function is presented. The influence of anisotropy on the macroscopic properties of the samples is clarified, by interpolating between several limiting cases of load sharing. Furthermore, the critical stress and the distribution of failure avalanches are obtained numerically for different values of the anisotropy parameter α\alpha and as a function of the interaction exponent γ\gamma. From numerical results, one can certainly conclude that the anisotropy does not change the crossover point γc=2\gamma_c=2 in 2D. Hence, in the limit of infinite system size, the crossover value γc=2\gamma_c=2 between local and global load sharing is the same as the one obtained in the isotropic case. In the case of finite systems, however, for γ≤2\gamma\le2, the global load sharing behavior is approached very slowly

    One-loop corrections to gaugino (co-)annihilation into quarks in the MSSM

    Full text link
    We present the full O(αs)\mathcal{O}(\alpha_s) supersymmetric QCD corrections for gaugino annihilation and co-annihilation into light and heavy quarks in the Minimal Supersymmetric Standard Model (MSSM). We demonstrate that these channels are phenomenologically relevant within the so-called phenomenological MSSM. We discuss selected technical details such as the dipole subtraction method in the case of light quarks and the treatment of the bottom quark mass and Yukawa coupling. Numerical results for the (co-)annihilation cross sections and the predicted neutralino relic density are presented. We show that the impact of including the radiative corrections on the cosmologically preferred region of the parameter space is larger than the current experimental uncertainty from Planck data.Comment: 19 pages, 9 figures. Matches version published in Phys.Rev.

    Break-up of shells under explosion and impact

    Get PDF
    A theoretical and experimental study of the fragmentation of closed thin shells made of a disordered brittle material is presented. Experiments were performed on brown and white hen egg-shells under two different loading conditions: fragmentation due to an impact with a hard wall and explosion by a combustion mixture giving rise to power law fragment size distributions. For the theoretical investigations a three-dimensional discrete element model of shells is constructed. Molecular dynamics simulations of the two loading cases resulted in power law fragment mass distributions in satisfactory agreement with experiments. Based on large scale simulations we give evidence that power law distributions arise due to an underlying phase transition which proved to be abrupt and continuous for explosion and impact, respectively. Our results demonstrate that the fragmentation of closed shells defines a universality class different from that of two- and three-dimensional bulk systems.Comment: 11 pages, 14 figures in eps forma
    • …
    corecore