371 research outputs found

    Turbulence and wind speed proïŹles for simulating the TMT AO performances

    Get PDF
    The site testing campaign of the Thirty Meter Telescope gathered an extensive amount of turbulence profiles. This data is modeled to describe the statistical characteristics of each site and act as "standard atmospheres" for use in AO simulations

    Effects of 8 Weeks of Flexibility and Resistance Training in Older Adults With Type 2 Diabetes

    Get PDF
    (First paragraph) Flexibility is often downplayed as unimportant to fitness. However, flexibility training is imperative to maintain full range of motion (ROM) of joints, particularly in individuals with type 2 diabetes, who may experience limited joint mobility due to glycation of joint structures (1). Maladies such as “frozen shoulder” are common complaints in type 2 diabetes (2)

    Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell

    Get PDF
    A multipass cell is described which allows efficient stimulated Raman frequency shifting for low pump laser intensities and low gas pressures. The latter is important for Raman shifting of narrow-band Fourier-transform limited light pulses (Δv=75 MHz). It is shown that frequency broadening of the Raman shifted light can be largely avoided in the Dicke narrowing regime at low pressures. For 75 MHz pump pulses and an H2 density of 2.5 amagat we found a negligible broadening to 90 MHz of the stimulated Stokes light. This is far below the value of 250 MHz expected from spontaneous emission. The narrow-band Stokes pulses achieved in CO2 enabled us to measure the pressure shift coefficient (-0.71×10-2 cm-1/amagat) of this gas. It is demonstrated, for the example of benzene, that our technique provides a very practical light source for high resolution molecular spectroscopy

    Geometric distortion calibration with photolithographic pinhole masks for high-precision astrometry

    Get PDF
    Adaptive optics (AO) systems deliver high-resolution images that may be ideal for precisely measuring positions of stars (i.e., astrometry) if the system has stable and well-calibrated geometric optical distortions. A calibration unit equipped with a back-illuminated pinhole mask can be utilized to measure instrumental optical distortions. AO systems on the largest ground-based telescopes, such as the W. M. Keck Observatory and the Thirty Meter Telescope (TMT), require pinhole positions known to be ∌20  nm to achieve an astrometric precision of 0.001 of a resolution element. In pursuit of that goal, we characterize a photolithographic pinhole mask and explore the systematic errors that result from different experimental setups. We characterized the nonlinear geometric distortion of a simple imaging system using the mask, and we measured 857-nm root mean square of optical distortion with a final residual of 39 nm (equivalent to 20  Ό for TMT). We use a sixth-order bivariate Legendre polynomial to model the optical distortion and allow the reference positions of the individual pinholes to vary. The nonlinear deviations in the pinhole pattern with respect to the manufacturing design of a square pattern are 47.2 nm ± 4.5 nm (random) ± 10.8 nm (systematic) over an area of 1788  mmÂČ. These deviations reflect the additional error induced when assuming that the pinhole mask is manufactured perfectly square. We also find that ordered mask distortions are significantly more difficult to characterize than random mask distortions as the ordered distortions can alias into optical camera distortion. Future design simulations for astrometric calibration units should include ordered mask distortions. We conclude that photolithographic pinhole masks are >10 times better than the pinhole masks deployed in first-generation AO systems and are sufficient to meet the distortion calibration requirements for the upcoming 30-m-class telescopes

    The significance of seniority for women managers’ interpretations of organizational restructuring

    Get PDF
    This paper examines the impact of restructuring within the transport and logistics sector on women managers working at senior and less senior (middle/junior management) levels of the organization. The majority of women experienced increased performance pressures and heavier workloads as well as an increase in working hours. At the same time, there were pressures to work at home (i.e. week-ends and evenings) and reduced opportunities to work from home (i.e. during normal office hours). Management level emerged as an important factor in how these changes were interpreted. Senior managers perceived more positive outcomes in terms of increased motivation and loyalty. Despite a longer working week, they were less likely to report low morale as an outcome from long hours. In fact, irrespective of management level, women working shorter hours were more likely to report low morale as an outcome. Results are discussed in relation to literature on restructuring and careers, in terms of perceptual framing and in relation to different levels of investment in the organization

    Negating effects from sodium profile variations for TMT: the MOR truth wavefront sensor of NFIRAOS

    Get PDF
    The Moderate Order Radial (MOR) Truth Wavefront Sensor (TWFS) of NFIRAOS, the facility AO system for TMT, is a visible light order 12x12 subaperture Shack-Hartmann WFS. Its role is to sense radial wavefront errors arising from variations in the Sodium layer profile that are not sensed by the on-instrument near infrared tip-tilt focus wavefront sensor at a sampling frequency on the order of one Herz. It works in concert with the High Order Low bandwidth (HOL) TWFS, which will use a 120x120 subaperture Shack-Hartmann WFS that senses slow variations in telescope flexure and the rotation of the pupil. Top-level requirements for NFIRAOS leave little margin for degradation in sky coverage or additional implementation wavefront errors introduced by the operation of the MOR TWFS. In this paper, we explore MOR TWFS design trade studies on the number of subapertures, sampling rate, the width of the MOR TWFS visible bandpass, and the split in light between the MOR and HOL TWFS, and present a design for a system which meets the top level requirements by not degrading the high sky coverage of NFIRAOS (50% sky coverage at the Galactic poles) and rejecting the radial modes with a residual wavefront error of 10nm

    The Infrared Imaging Spectrograph (IRIS) for TMT: Multi-tiered wavefront measurements and novel mechanical design

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS’s superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of the mechanical structure and interface

    Giving Miss Marple a makeover : graduate recruitment, systems failure and the Scottish voluntary sector

    Get PDF
    The voluntary sector in Scotland, as across the globe, is becoming increasingly business like. Resultantly, there is an increasing demand for graduates to work in business and support functions. In Scotland, however, despite an oversupply of graduates in the labor market, the voluntary sector reports skills shortages for graduate-level positions; a leadership deficit was also reported in countries such as the United States. Through exploratory, mainly qualitative, case study and stakeholder research, this article proposes that one reason for this mismatch between the supply of and demand for graduates is a systems failure within the sector. Many graduates and university students remain unaware of potentially suitable paid job opportunities, in part because of the sector's voluntary label. To rectify this systems failure, thought needs to be given to the sector's nomenclature and the manner in which voluntary sector organizations attract graduate recruits, for example, through levering value congruence in potential recruits
    • 

    corecore