183 research outputs found

    Comparison of Glucose Monitoring Methods during Steady-State Exercise in Women

    Get PDF
    Data from Continuous Glucose Monitoring (CGM) systems may help improve overall daily glycemia; however, the accuracy of CGM during exercise remains questionable. The objective of this single group experimental study was to compare CGM-estimated values to venous plasma glucose (VPG) and capillary plasma glucose (CPG) during steady-state exercise. Twelve recreationally active females without diabetes (aged 21.8 Âą 2.4 years), from Central Washington University completed the study. CGM is used by individuals with diabetes, however the purpose of this study was to first validate the use of this device during exercise for anyone. Data were collected between November 2009 and April 2010. Participants performed two identical 45-min steady-state cycling trials (~60% Pmax) on non-consecutive days. Glucose concentrations (CGM-estimated, VPG, and CPG values) were measured every 5 min. Two carbohydrate gel supplements along with 360 mL of water were consumed 15 min into exercise. A product-moment correlation was used to assess the relationship and a Bland-Altman analysis determined error between the three glucose measurement methods. It was found that the CGM system overestimated mean VPG (mean absolute difference 17.4 mg/dL (0.97 mmol/L)) and mean CPG (mean absolute difference 15.5 mg/dL (0.86 mmol/L)). Bland-Altman analysis displayed wide limits of agreement (95% confidence interval) of 44.3 mg/dL (2.46 mmol/L) (VPG compared with CGM) and 41.2 mg/dL (2.29 mmol/L) (CPG compared with CGM). Results from the current study support that data from CGM did not meet accuracy standards from the 15197 International Organization for Standardization (ISO)

    Comparative analysis of methods for detecting interacting loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted.</p> <p>Results</p> <p>We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding <it>multiple </it>sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs.</p> <p>Conclusion</p> <p>This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: <url>http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list</url>.</p

    The perceived barriers to the inclusion of rainwater harvesting systems by UK house building companies

    Get PDF
    This work investigates the barriers that exist to deter the implementation of rainwater harvesting into new UK housing. A postal questionnaire was sent to a selection of large, medium and small house-builders distributed across the UK. Questions were asked concerning potential barriers to the inclusion of rainwater harvesting in homes separated into five sections; (1) institutional and regulatory gaps, (2) economic and financial constraints, (3) absence of incentives, (4) lack of information and technical knowledge, and (5) house-builder attitudes. The study concludes that although the knowledge of rainwater systems has increased these barriers are deterring house-builders from installing rainwater harvesting systems in new homes. It is further acknowledged that the implementation of rainwater harvesting will continue to be limited whilst these barriers remain and unless resolved, rainwater harvesting's potential to reduce the consumption of potable water in houses will continue to be limited

    Utility of Nontraditional Risk Markers in Atherosclerotic Cardiovascular Disease Risk Assessment

    Get PDF
    AbstractBackgroundThe improvement in discrimination gained by adding nontraditional cardiovascular risk markers cited in the 2013 American College of Cardiology/American Heart Association cholesterol guidelines to the atherosclerotic cardiovascular disease (ASCVD) risk estimator (pooled cohort equation [PCE]) is untested.ObjectivesThis study assessed the predictive accuracy and improvement in reclassification gained by the addition of the coronary artery calcium (CAC) score, the ankle–brachial index (ABI), high-sensitivity C-reactive protein (hsCRP) levels, and family history (FH) of ASCVD to the PCE in participants of MESA (Multi-Ethnic Study of Atherosclerosis).MethodsThe PCE was calibrated (cPCE) and used for this analysis. The Cox proportional hazards survival model, Harrell’s C statistics, and net reclassification improvement analyses were used. ASCVD was defined as myocardial infarction, coronary heart disease–related death, or fatal or nonfatal stroke.ResultsOf 6,814 MESA participants not prescribed statins at baseline, 5,185 had complete data and were included in this analysis. Their mean age was 61 years; 53.1% were women, 9.8% had diabetes, and 13.6% were current smokers. After 10 years of follow-up, 320 (6.2%) ASCVD events occurred. CAC score, ABI, and FH were independent predictors of ASCVD events in the multivariable Cox models. CAC score modestly improved the Harrell’s C statistic (0.74 vs. 0.76; p = 0.04); ABI, hsCRP levels, and FH produced no improvement in Harrell’s C statistic when added to the cPCE.ConclusionsCAC score, ABI, and FH were independent predictors of ASCVD events. CAC score modestly improved the discriminative ability of the cPCE compared with other nontraditional risk markers

    An Electrochemical Study of Frustrated Lewis Pairs: A Metal-free Route to Hydrogen Oxidation

    Get PDF
    [Image: see text] Frustrated Lewis pairs have found many applications in the heterolytic activation of H(2) and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H(2) can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H(2) oxidation by 610 mV (117.7 kJ mol(–1)). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology

    Development and Validation of Risk Prediction Models for Cardiovascular Events in Black Adults: The Jackson Heart Study Cohort

    Get PDF
    Cardiovascular risk assessment is a fundamental component of prevention of cardiovascular disease (CVD). However, commonly used prediction models have been formulated in primarily or exclusively white populations. Whether risk assessment in black adults is dissimilar to that in white adults is uncertain

    Year-long stability of nucleic acid bases in concentrated sulfuric acid: implications for the persistence of organic chemistry in Venus’ clouds

    Get PDF
    We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine, and the “core” nucleic acid bases purine and pyrimidine, are stable for more than one year in concentrated sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water). This work builds on our initial stability studies and is the first ever to test the reactivity and structural integrity of organic molecules subjected to extended incubation in concentrated sulfuric acid. The one-year-long stability of nucleic acid bases supports the notion that the Venus cloud environment—composed of concentrated sulfuric acid—may be able to support complex organic chemicals for extended periods of time

    Stability of nucleic acid bases in concentrated sulfuric acid: Implications for the habitability of Venus'clouds

    Get PDF
    What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus’ 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus’ cloud-filled atmosphere layers at 48 to 60 km above the surface hold the main requirements for life: suitable temperatures for covalent bonds; an energy source (sunlight); and a liquid solvent. Yet, the Venus clouds are widely thought to be incapable of supporting life because the droplets are composed of concentrated liquid sulfuric acid—an aggressive solvent that is assumed to rapidly destroy most biochemicals of life on Earth. Recent work, however, demonstrates that a rich organic chemistry can evolve from simple precursor molecules seeded into concentrated sulfuric acid, a result that is corroborated by domain knowledge in industry that such chemistry leads to complex molecules, including aromatics. We aim to expand the set of molecules known to be stable in concentrated sulfuric acid. Here, we show that nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine and the “core” nucleic acid bases purine and pyrimidine, are stable in sulfuric acid in the Venus cloud temperature and sulfuric acid concentration range, using UV spectroscopy and combinations of 1D and 2D 1H 13C 15N NMR spectroscopy. The stability of nucleic acid bases in concentrated sulfuric acid advances the idea that chemistry to support life may exist in the Venus cloud particle environment
    • …
    corecore