75 research outputs found

    A systematic review of childhood maltreatment and resting state functional connectivity

    Get PDF
    Resting-state functional connectivity (rsFC) has the potential to shed light on how childhood abuse and neglect relates to negative psychiatric outcomes. However, a comprehensive review of the impact of childhood maltreatment on the brain's resting state functional organization has not yet been undertaken. We systematically searched rsFC studies in children and youth exposed to maltreatment. Nineteen studies (total n = 3079) met our inclusion criteria. Two consistent findings were observed. Childhood maltreatment was linked to reduced connectivity between the anterior insula and dorsal anterior cingulate cortex, and with widespread heightened amygdala connectivity with key structures in the salience, default mode, and prefrontal regulatory networks. Other brain regions showing altered connectivity included the ventral anterior cingulate cortex, dorsolateral prefrontal cortex, and hippocampus. These patterns of altered functional connectivity associated with maltreatment exposure were independent of symptoms, yet comparable to those seen in individuals with overt clinical disorder. Summative findings indicate that rsFC alterations associated with maltreatment experience are related to poor cognitive and social functioning and are prognostic of future symptoms. In conclusion, maltreatment is associated with altered rsFC in emotional reactivity, regulation, learning, and salience detection brain circuits. This indicates patterns of recalibration of putative mechanisms implicated in maladaptive developmental outcomes

    A Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet

    Full text link
    We have investigated by Monte-Carlo simulation the phase diagram of a three-dimensional Ising model with nearest-neighbor ferromagnetic interactions and small, but long-range (Coulombic) antiferromagnetic interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries, which allows us to obtain the main characteristics of the temperature-frustration phase diagram. Our finite-size scaling analysis confirms that the melting of the lamellar phases into the paramgnetic phase is driven first-order by the fluctuations. Transitions between ordered phases with different modulation patterns is observed in some regions of the diagram, in agreement with a recent mean-field analysis.Comment: 14 pages, 10 figures, submitted to Phys. Rev.

    GOBLET: the Global Organisation for Bioinformatics Learning, Education and Training

    Get PDF
    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy--paradoxically, many are actually closing "niche" bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all

    GOBLET: The Global Organisation for Bioinformatics Learning, Education and Training

    Get PDF
    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy—paradoxically, many are actually closing “niche” bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all

    Neuroimaging-Based Classification of PTSD Using Data-Driven Computational Approaches:A Multisite Big Data Study from the ENIGMA-PGC PTSD Consortium

    Get PDF
    BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group.METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality.RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60% test AUC for s-MRI, 59% for rs-fMRI and 56% for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75% AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance.CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.</p

    Neuroimaging-based classification of PTSD using data-driven computational approaches: a multisite big data study from the ENIGMA-PGC PTSD consortium

    Get PDF
    Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.Stress-related psychiatric disorders across the life spa

    Childhood and adult trauma both correlate with dorsal anterior cingulate activation to threat in combat veterans

    No full text
    Background Prior studies of adult post-traumatic stress disorder (PTSD) suggest abnormal functioning of prefrontal and limbic regions. Cumulative childhood and adult trauma exposures are major risk factors for developing adult PTSD, yet their contribution to neural dysfunction in PTSD remains poorly understood. This study aimed to examine the neural correlates of childhood and adult trauma exposure and post-traumatic stress symptoms (PTSS) within a single model. Method Medication-free male combat veterans (n = 28, average age 26.6 years) with a wide range of PTSS were recruited from the community between 2010 and 2011. Subjects completed an emotional face-morphing task while undergoing functional magnetic resonance imaging (fMRI). Clinical ratings included the Clinician-Administered PTSD Scale (CAPS), Childhood Trauma Questionnaire (CTQ) and Combat Exposure Scale (CES). A priori regions were examined through multivariate voxelwise regression in SPM8, using depressive symptoms and IQ as covariates. Results In the angry condition, CAPS scores correlated positively with activation in the medial prefrontal cortex [mPFC; Brodmann area (BA) 10, z = 3.51], hippocampus (z = 3.47), insula (z = 3.62) and, in earlier blocks, the amygdala. CES and CTQ correlated positively with activation in adjacent areas of the dorsal anterior cingulate cortex (dACC; BA 32, z = 3.70 and BA 24, z = 3.88 respectively). In the happy condition, CAPS, CTQ and CES were not correlated significantly with activation patterns. Conclusions dACC activation observed in prior studies of PTSD may be attributable to the cumulative effects of childhood and adult trauma exposure. By contrast, insula, hippocampus and amygdala activation may be specific to PTSS. The specificity of these results to threat stimuli, but not to positive stimuli, is consistent with abnormalities in threat processing associated with PTSS

    A systematic review of childhood maltreatment and resting state functional connectivity

    No full text
    Resting-state functional connectivity (rsFC) has the potential to shed light on how childhood abuse and neglect relates to negative psychiatric outcomes. However, a comprehensive review of the impact of childhood maltreatment on the brain's resting state functional organization has not yet been undertaken. We systematically searched rsFC studies in children and youth exposed to maltreatment. Nineteen studies (total n = 3079) met our inclusion criteria. Two consistent findings were observed. Childhood maltreatment was linked to reduced connectivity between the anterior insula and dorsal anterior cingulate cortex, and with widespread heightened amygdala connectivity with key structures in the salience, default mode, and prefrontal regulatory networks. Other brain regions showing altered connectivity included the ventral anterior cingulate cortex, dorsolateral prefrontal cortex, and hippocampus. These patterns of altered functional connectivity associated with maltreatment exposure were independent of symptoms, yet comparable to those seen in individuals with overt clinical disorder. Summative findings indicate that rsFC alterations associated with maltreatment experience are related to poor cognitive and social functioning and are prognostic of future symptoms. In conclusion, maltreatment is associated with altered rsFC in emotional reactivity, regulation, learning, and salience detection brain circuits. This indicates patterns of recalibration of putative mechanisms implicated in maladaptive developmental outcomes

    Large-scale brain organization during facial emotion processing as a function of early life trauma among adolescent girls

    No full text
    Background: A wealth of research has investigated the impact of early life trauma exposure on functional brain activation during facial emotion processing and has often demonstrated amygdala hyperactivity and weakened connectivity between amygdala and medial PFC (mPFC). There have been notably limited investigations linking these previous node-specific findings into larger-scale network models of brain organization. Method: To address these gaps, we applied graph theoretical analyses to fMRI data collected during a facial emotion processing task among 88 adolescent girls (n=59 exposed to direct physical or sexual assault; n=29 healthy controls), aged 11–17, during fMRI. Large-scale organization indices of modularity, assortativity, and global efficiency were calculated for stimulus-specific functional connectivity using an 883 region-of-interest parcellation. Results: Among the entire sample, more severe early life trauma was associated with more modular and assortative, but less globally efficient, network organization across all stimulus categories. Among the assaulted girls, severity of early life trauma and PTSD diagnoses were both simultaneously related to increased modular brain organization. We also found that more modularized network organization was related both to amygdala hyperactivation and weakened connectivity between amygdala and medial PFC. Conclusions: These results demonstrate that early life trauma is associated with enhanced brain organization during facial emotion processing and that this pattern of brain organization might explain the commonly observed association between childhood trauma and amygdala hyperactivity and weakened connectivity with mPFC. Implications of these results for neurocircuitry models are discussed
    • 

    corecore